October 26 Math 2306 sec 51 Fall 2015

Section 7.2: Inverse Transforms and Derivatives

We'll use the following notation

$$
\mathscr{L}^{-1}\{F(s)\}=f(t) \quad \Longleftrightarrow \mathscr{L}\{f(t)\}=F(s)
$$

We'll call $f(t)$ the inverse Laplace transform of $F(s)$.
A formula exists for the inverse Laplace transform, however we will use a table. And we will keep in mind when using the table that the expression must match exactly that in the table.

A Table of Inverse Laplace Transforms

- $\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}=1$
- $\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}=t^{n}$, for $n=1,2, \ldots$
- $\mathscr{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t}$
- $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}=\cos k t$
- $\mathscr{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}=\sin k t$

The inverse Laplace transform is also linear so that

$$
\mathscr{L}^{-1}\{\alpha F(s)+\beta G(s)\}=\alpha f(t)+\beta g(t)
$$

Find the Inverse Laplace Transform
(c) $\mathscr{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\}$

$$
\begin{gathered}
\frac{s-8}{s(s-2)}=\frac{A}{s}+\frac{B}{s-2} \\
s-8=A(s-2)+B s \\
\text { set } s=0 \quad-8=-2 A \Rightarrow A=4 \\
s=2 \quad-6=2 B \Rightarrow B=-3
\end{gathered}
$$

Molt both sides by $s(s-2)$
Start wi pantie fraction decomp

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\} & =\mathcal{L}^{-1}\left\{\frac{4}{s}+\frac{-3}{s-2}\right\} \\
& =4 \mathcal{L}^{-1}\left\{\frac{1}{5}\right\}-3 \mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\} \\
& =4(1)-3 e^{2 t} \\
& =4-3 e^{2 t}
\end{aligned}
$$

Example: Evaluate
Panticl Fraction Decomp
(d) $\mathscr{L}^{-1}\left\{\frac{2 s^{2}+s+10}{s\left(s^{2}+5\right)}\right\}$

$$
\begin{array}{r}
\frac{2 s^{2}+s+10}{s\left(s^{2}+s\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+5} \\
2 s^{2}+s+10=A\left(s^{2}+5\right)+(B s+C) s \\
==(A+B) s^{2}+C s+5 A \\
==
\end{array}
$$

mult. b_{y}

$$
s\left(s^{2}+5\right)
$$

Motch coefficients

$$
\begin{gathered}
S A=10 \Rightarrow A=2 \\
C=1 \\
A+B=2 \Rightarrow B=2-A=0 \\
\mathcal{L}^{-1}\left\{\frac{2 s^{2}+s+10}{s\left(s^{2}+5\right)}\right\}=\mathcal{L}^{-1}\left\{\frac{2}{s}+\frac{1}{s^{2}+s}\right\} \\
=2 \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+5}\right\}
\end{gathered}
$$

$$
\begin{aligned}
& =2 \mathcal{L}^{-1}\left\{\frac{1}{5}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{\sqrt{5}} \frac{\sqrt{5}}{s^{2}+(\sqrt{5})^{2}}\right\} \\
& =2 \mathcal{L}^{-1}\left\{\frac{1}{5}\right\}+\frac{1}{\sqrt{5}} \mathcal{L}^{-1}\left\{\frac{\sqrt{5}}{s^{2}+(\sqrt{5})^{2}}\right\} \\
& =2 \cdot 1+\frac{1}{\sqrt{5}} \sin (\sqrt{5} t) \\
& =2+\frac{1}{\sqrt{5}} \sin (\sqrt{5} t)
\end{aligned}
$$

Transforms of Derivatives
Suppose f has a Laplace transform ${ }^{1}$ and that f is differentiable on $[0, \infty)$. Obtain an expression for the Laplace tranform of $f^{\prime}(t)$.

$$
\begin{array}{rlrl}
\mathscr{L}\left\{f^{\prime}(t)\right\} & =\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t & & \text { Int. by parts } \\
& =\left.e^{-s t} f(t)\right|_{0} ^{\infty}+s \int_{0}^{\infty} e^{-s t} f(t s d t & v & =f(t) \\
& d u=-s e^{-s t} d t \\
& =0-e^{0} f(0)+s \int_{0}^{\infty}(t) d t \\
e^{-s t} f(t) d t
\end{array}
$$

$$
\begin{aligned}
\mathscr{L}\left\{f^{\prime}(t)\right\} & =s \mathcal{L}\{f(t)\}-f(0) \\
& =s F(s)-f(0) \\
& \text { wher } F(0)=\mathcal{L}\{f(t)\}
\end{aligned}
$$

Transforms of Derivatives
From $\mathscr{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$, find

$$
\begin{aligned}
\mathscr{L}\left\{f^{\prime \prime}(t)\right\} & =\int_{0}^{\infty} e^{-s t} f^{\prime \prime}(t) d t \\
& =s \mathscr{L}\left\{f^{\prime}(t)\right\}-f^{\prime}(0) \\
& =s(s \mathcal{L}\{f(t)\}-f(0))-f^{\prime}(0) \\
& =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

Transforms of Derivatives

For $y=y(t)$ defined on $[0, \infty)$ having derivatives $y^{\prime}, y^{\prime \prime}$ and so forth, if

$$
\mathscr{L}\{y(t)\}=Y(s)
$$

then

$$
\begin{gathered}
\mathscr{L}\left\{\frac{d y}{d t}\right\}=s Y(s)-y(0) \\
\mathscr{L}\left\{\frac{d^{2} y}{d t^{2}}\right\}=s^{2} Y(s)-s y(0)-y^{\prime}(0) \\
\vdots \\
\mathscr{L}\left\{\frac{d^{n} y}{d t^{n}}\right\}=s^{n} Y(s)-s^{n-1} y(0)-s^{n-2} y^{\prime}(0)-\cdots-y^{(n-1)}(0)
\end{gathered}
$$

Differential Equation
For constants a, b, and c, take the Laplace transform of both sides of the equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t), \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}
$$

Let $Y(s)=\mathcal{L}\{y(t)\}$ and $G(s)=\mathscr{L}\{g(t)\}$

$$
\begin{aligned}
& \mathcal{L}\left\{a y^{\prime \prime}+b y^{\prime}+c y\right\}=\mathcal{L}\{g(t)\} \\
& a \mathscr{Z}\left\{y^{\prime \prime}\right\}+b \mathcal{L}\left\{y^{\prime}\right\}+c \mathscr{L}\{y\}=\mathcal{L}\{g(t)\} \\
& a\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)+b(s Y(s)-y(0))+c Y(s)=G(s)
\end{aligned}
$$

$$
\left(a s^{2}+b s+c\right) Y(s)-a y_{0} s-a y_{1}-b y_{0}=G(s)
$$

Solve for $Y(s)$

$$
\begin{aligned}
& \left(a s^{2}+b s+c\right) Y(s)=a y_{0} s+a y_{1}+b y_{0}+G(s) \\
& Y_{1}(s)=\frac{a y_{0} s+a y_{1}+b y_{0}}{a s^{2}+b s+c}+\frac{G(s)}{a s^{2}+b s+c}
\end{aligned}
$$

Solving IVPs

Figure: We use the Laplace transform to turn our DE into an algebraic equation. Solve this transformed equation, and then transform back.

General Form

We get

$$
Y(s)=\frac{Q(s)}{P(s)}+\frac{G(s)}{P(s)}
$$

where Q is a polynomial with coefficients determined by the initial conditions, G is the Laplace transform of $g(t)$ and P is the characteristic polynomial of the original equation.
$\mathscr{L}^{-1}\left\{\frac{Q(s)}{P(s)}\right\} \quad$ is called the zero input response,
and
$\mathscr{L}^{-1}\left\{\frac{G(s)}{P(s)}\right\} \quad$ is called the zero state response.

Solve the IVP using the Laplace Transform
(a)

$$
\begin{aligned}
& \frac{d y}{d t}+3 y=2 t \quad y(0)=2 \quad Y(s)=\mathscr{L}\{y(t)\} \\
& \mathcal{L}\left\{\frac{d y}{d t}+3 y\right\}=\mathcal{L}\{2 t\} \\
& \mathcal{L}\left\{\frac{d y}{d t}\right\}+3 \mathcal{L}\{y\}=2 \mathcal{L}\{t\} \\
& s Y(s)-y(0)+3 Y(s)=\frac{2}{s^{2}} \\
& (s+3) Y(s)-2=\frac{2}{\delta^{2}} \Rightarrow(s+3) Y(s)=\frac{2}{s^{2}}+2
\end{aligned}
$$

$$
Y(s)=\frac{2 s^{2}+2}{s^{2}(s+3)} \quad y(t)=y^{-1}\left\{\frac{2 s^{2}+2}{s^{2}(s+3)}\right\}
$$

partice fractions:

$$
\begin{gathered}
\frac{2 s^{2}+2}{s^{2}(s+3)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s+3} \\
0 s+2 s^{2}+2=A s(s+3)+B(s+3)+C s^{2} \\
=\quad=(A+C) s^{2}+(3 A+B) s+3 B \\
==
\end{gathered}
$$

Mult by

$$
s^{2}(s+3)
$$ $s^{2}(s+3)$

$$
\begin{gathered}
3 B=2 \Rightarrow B=\frac{2}{3} \\
3 A+B=0 \Rightarrow 3 A=-B=\frac{-2}{3} \Rightarrow A=\frac{-2}{9} \\
A+C=2 \Rightarrow C=2-A=2+\frac{2}{9}=\frac{20}{9} \\
y(t)=\mathcal{L}^{-1}\left\{\frac{-2 / 9}{s}+\frac{2 / 3}{s^{2}}+\frac{20 / 9}{s+3}\right\} \\
=-\frac{2}{9} \mathcal{L}^{-1}\left\{\frac{1}{8}\right\}+\frac{2}{3} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}+\frac{20}{9} \mathcal{L}^{-1}\left\{\frac{1}{s+3}\right\}
\end{gathered}
$$

$$
y(t)=\frac{-2}{9}+\frac{2}{3} t+\frac{20}{9} e^{-3 t}
$$

