## October 26 Math 2306 sec. 53 Fall 2018

## Section 14: Inverse Laplace Transforms

Now we wish to go backwards: Given $F(s)$ can we find a function $f(t)$ such that $\mathscr{L}\{f(t)\}=F(s)$ ?

If so, we'll use the following notation

$$
\mathscr{L}^{-1}\{F(s)\}=f(t) \quad \text { provided } \quad \mathscr{L}\{f(t)\}=F(s) .
$$

We'll call $f(t)$ an inverse Laplace transform of $F(s)$.

## A Table of Inverse Laplace Transforms

- $\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}=1$
- $\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}=t^{n}$, for $n=1,2, \ldots$
- $\mathscr{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t}$
- $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}=\cos k t$
- $\mathscr{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}=\sin k t$

The inverse Laplace transform is also linear so that

$$
\mathscr{L}^{-1}\{\alpha F(s)+\beta G(s)\}=\alpha f(t)+\beta g(t)
$$

Example: Evaluate
well use a partial fraction
(c) $\mathscr{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\}$ decamp.

$$
\begin{gathered}
\frac{s-8}{s^{2}-2 s}=\frac{s-8}{s(s-2)}=\frac{A}{s}+\frac{B}{s-2} \\
s-8=A(s-2)+B s
\end{gathered}
$$

Set $s=0$

$$
0-8=A(-2)+B \cdot 0 \Rightarrow-8=-2 A \Rightarrow A=4
$$

set $s=2$

$$
2-8=A(0)+B(2) \Rightarrow-6=2 B \Rightarrow B=-3
$$

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\} & =\mathcal{L}^{-1}\left\{\frac{4}{s}-\frac{3}{s-2}\right\} \\
& =4 \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-3 \mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\} \\
& =4 \cdot 1-3 e^{2 t}
\end{aligned}
$$

## Section 15: Shift Theorems

Suppose we wish to evaluate $\mathscr{L}^{-1}\left\{\frac{2}{(s-1)^{3}}\right\}$. Does it help to know that $\mathscr{L}\left\{t^{2}\right\}=\frac{2}{s^{3}}$ ?
By definition $\mathscr{L}\left\{e^{t} t^{2}\right\}=\int_{0}^{\infty} e^{-s t} e^{t} t^{2} d t$
Note

$$
=\int_{0}^{\infty} e^{-(s-1) t} t^{2} d t \quad=e^{-(s-1) t}
$$

Observe that this is simply the Laplace transform of $f(t)=t^{2}$ evaluated at $s-1$. Letting $F(s)=\mathscr{L}\left\{t^{2}\right\}$, we have

$$
F(s-1)=\frac{2}{(s-1)^{3}}
$$

## Theorem (translation in s)

Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

For example,

$$
\begin{gathered}
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \Longrightarrow \mathscr{L}\left\{e^{a t t^{n}}\right\}=\frac{n!}{(s-a)^{n+1}} . \\
\mathscr{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}} \Longrightarrow \mathscr{L}\left\{e^{a t} \cos (k t)\right\}=\frac{s-a}{(s-a)^{2}+k^{2}} .
\end{gathered}
$$

Inverse Laplace Transforms (completing the square)
(a) $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\}$

Q: Does the denominator factor?
If yes - do partied fractions
If no -complete the square
$s^{2}+2 s+2$ is irreducible

$$
\begin{aligned}
& s^{s^{2}+2 s+1-1+2=(s+1)^{2}+1} \\
& \frac{s}{s^{2}+2 s+2}=\frac{s}{(s+1)^{2}+1} \quad \text { Note } s=s+1-1 \\
& =\frac{s+1-1}{(s+1)^{2}+1}=\frac{s+1}{(s+1)^{2}+1}-\frac{1}{(s+1)^{2}+1}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\}=\mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+1}-\frac{1}{(s+1)^{2}+1}\right\} \\
&=\mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+1}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}+1}\right\} \\
& a=1 \\
& a=1 \\
& a=-1 \\
& a_{i}-1 \\
&=e^{-t} \cos t-e^{-t} \sin t
\end{aligned}
$$

From toble: $\mathcal{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}}$

$$
\mathcal{L}\{\sin (k t)\}=\frac{k}{s^{2}+k^{2}}
$$

Inverse Laplace Transforms (repeat linear factors)
(b) $\mathscr{L}^{-1}\left\{\frac{1+3 s-s^{2}}{s(s-1)^{2}}\right\} \quad$ Particle fractions

$$
\begin{aligned}
\frac{-s^{2}+3 s+1}{s(s-1)^{2}} & =\frac{A}{s}+\frac{B}{s-1}+\frac{C}{(s-1)^{2}} s(s-1)^{2} \\
-s^{2}+3 s+1 & =A(s-1)^{2}+B s(s-1)+C s \\
= & =A\left(s^{2}-2 s+1\right)+B\left(s^{2}-s\right)+C s \\
& =(A+B) s^{2}+(-2 A-B+C) s+A
\end{aligned}
$$

$$
\begin{aligned}
& A=1 \\
& -2 A-B+C=3 \quad C=3+B+2 A=3-2+2=3 \\
& A+B=-1 \quad \Rightarrow \quad B=-1-A=-2 \\
& \mathscr{L}^{-1}\left\{\frac{1+3 s-s^{2}}{s(s-1)^{2}}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s}-\frac{2}{s-1}+\frac{3}{(s-1)^{2}}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-2 \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}+3 \mathcal{L}^{-1}\left\{\frac{1}{(s-1)^{2}}\right\}
\end{aligned}
$$

looks lihe

$$
\mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}
$$

$$
\begin{aligned}
& =1-2 e^{t}+3 e^{t} t \\
& F(s-1)=\frac{1}{(s-1)^{2}} \text { what is } F(s) ?
\end{aligned}
$$

