October 26 Math 2306 sec 54 Fall 2015

Section 7.1: The Laplace Transform

Definition: Let f(t) be defined on [0, o). The Laplace transform of f is
denoted and defined by

2Lt} = / e~Sif() ot = F(s).
0
The domain of the transformation F(s) is the set of all s such that the

integral is convergent.

Note: The kernel for the Laplace transform is K(s, t) = e~ 5.
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A piecewise defined function
Find the Laplace transform of f defined by

2t 0<t<10
f(t):{ 0, t>10
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The Laplace Transform is a Linear Transformation

Some basic results include:
» L{af(t)+ pg(t)} = aF(s) + BG(S)

v

Z{1y=1 s>0

v

L{t"y = J5, s>0forn=1,2,...

v

Z{efy =, s>a

s>0

v

Z{coskt} = 527,

s>0

v

Z{sinkt} = k2’
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Use the Table to Evaluate Z{f(t)}
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(© f(f)=(2—t) - y-ub+t*
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Hyperbolic Sine and Cosine

Define the hyperbolic sine and cosine functions

t oot o 4 ot '
%, and cosh(t):;, respectively.

sinh(t) = 5

Find the Laplace transforms of sinh t and cosh t.
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Sufficient Conditions for Existence of -Z{f(t)}

Definition: Let ¢ > 0. A function f defined on [0, ) is said to be of
exponential order ¢ provided there exists positive constants M and T
such that |f(t)] < Me“ forall t > T.

Definition: A function f is said to be piecewise continuous on an
interval [a, b] if f has at most finitely many jump discontinuities on [a, b]
and is continuous between each such jump.
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Sufficient Conditions for Existence of -Z{f(t)}

Theorem: If f is piecewise continuous on [0, co) and of exponential
order ¢ for some ¢ > 0, then f has a Laplace transform for s > c.
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Section 7.2: Inverse Transforms and Derivatives

Now we wish to go backwards: Given F(s) can we find a function f()
such that Z{f(t)} = F(s)?

If so, we’ll use the following notation

LTHF(9)} =1(t) = Z{f()} = F(s).

We'll call f(t) the inverse Laplace transform of F(s).
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A Table of Inverse Laplace Transforms

- 27 {1} =

» 27 { It =t"forn=1,2,...

. 1{3 a}:eat
> g*%ﬁ}:coski‘
> ¥ 1{

32+k2} = sin kt

The inverse Laplace transform is also linear so that

2~ {aF(s) + BG(s)} = af(t) + Bg(1)
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Find the Inverse Laplace Transform

When using the table, we have to match the expression inside the

brackets {} EXACTLY! Algebra, including partial fraction
decomposition, is often needed.
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Example: Evaluate
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Example: Evaluate

(©) 31{ s—8 } dfssfﬁu’}
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S$=2 -¢=298 = g=-3
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