October 26 Math 2306 sec. 56 Fall 2017

Section 15: Shift Theorems

Theorem: (Translation in s) Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a)
$$

For example,

$$
\begin{gathered}
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \Longrightarrow \mathscr{L}\left\{e^{a t} t^{n}\right\}=\frac{n!}{(s-a)^{n+1}} . \\
\mathscr{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}} \Longrightarrow \mathscr{L}\left\{e^{a t} \cos (k t)\right\}=\frac{s-a}{(s-a)^{2}+k^{2}} .
\end{gathered}
$$

The Unit Step Function

Let $a \geq 0$. The unit step function $\mathscr{U}(t-a)$ is defined by

$$
\mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}
$$

Figure: We can use the unit step function to provide convenient expressions for piecewise defined functions.

Translation in t

Given a function $f(t)$ for $t \geq 0$, and a number $a>0$

$$
f(t-a) \mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ f(t-a), & t \geq a\end{cases}
$$

Figure: The function $f(t-a) \mathscr{U}(t-a)$ has the graph of f shifted a units to the right with value of zero for t to the left of a.

Theorem (translation in t)

If $F(s)=\mathscr{L}\{f(t)\}$ and $a>0$, then

$$
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s) .
$$

In particular,

$$
\mathscr{L}\{\mathscr{U}(t-a)\}=\frac{e^{-a s}}{s} .
$$

As another example,

$$
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \quad \Longrightarrow \quad \mathscr{L}\left\{(t-a)^{n} \mathscr{U}(t-a)\right\}=\frac{n!e^{-a s}}{s^{n+1}} .
$$

Find $\mathscr{L}\{\mathscr{U}(t-a)\}$

$$
u(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}
$$

By definition

$$
\begin{aligned}
& y\{u(t-a)\}=\int_{0}^{\infty} e^{-s t} u(t-a) d t \\
& =\int_{0}^{a} e^{-s t} \cdot 0 d t+\int_{a}^{\infty} e^{-s t} \cdot 1 d t \\
& =\int_{a}^{\infty} e^{-s t} d t \\
& \text { divergs if } s=0 \\
& \text { substitutu } \\
& \tau=t-a, d \tau=d t \\
& =\int_{0}^{\infty} e^{-s(\tau+a)} d \tau \\
& t=\tau+a \\
& \text { when } t=a, \tau=a-a=0 \\
& \text { as } t \rightarrow \infty, r \rightarrow \infty
\end{aligned}
$$

Note $e^{-s(\tau+a)}=e^{-s \tau-s a}=e^{-s \tau} \cdot e^{-s a}$

$$
\begin{aligned}
& =\int_{0}^{\infty} e^{-s a} e^{-s \tau} d \tau \\
& =e^{-s a} \int_{0}^{\infty} e^{-\delta \tau} d \tau \\
& =e^{-s a} \mathcal{L}\{1\}=e^{-s \tau} \cdot \frac{1}{s}=\frac{e^{-s a}}{s}
\end{aligned}
$$

Example
Find the Laplace transform $\mathscr{L}\{h(t)\}$ where

$$
h(t)= \begin{cases}1, & 0 \leq t<1 \\ t, & t \geq 1\end{cases}
$$

(a) First write h in terms of unit step functions.

$$
\begin{aligned}
h(t) & =1-1 u(t-1)+t u(t-1) \\
& =1+u(t-1)(-1+t) \\
& =1+(t-1) u(t-1)
\end{aligned}
$$

Note that if $f(t)=t$, then

$$
\begin{aligned}
& f(t-1)=t-1 \\
& f(t-1) u(t-1)=(t-1) u(t-1)
\end{aligned}
$$

Example Continued...
(b) Now use the fact that $h(t)=1+(t-1) \mathscr{U}(t-1)$ to find $\mathscr{L}\{h\}$.

$$
\begin{aligned}
\mathcal{L}\{h(t)\} & =\mathcal{L}\{1+(t-1) u(t-1)\} \\
& =\mathcal{L}\{1\}+\mathcal{L}\{(t-1) u(t-1)\} \\
& =\frac{1}{s}+\frac{e^{-s}}{s^{2}} \\
* \mathcal{L}\{t\} & =\frac{1}{s^{2}}
\end{aligned}
$$

A Couple of Useful Results
Another formulation of this translation theorem is
(1) $\mathscr{L}\{g(t) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{g(t+a)\}$.

No to $g(t)=\delta((t+a)-a)$
Example: Find $\mathscr{L}\left\{\cos t \mathscr{U}\left(t-\frac{\pi}{2}\right)\right\}=e^{-\frac{\pi}{2} s} \mathcal{L}\left\{\cos \left(t+\frac{\pi}{2}\right)\right\}$

$$
\begin{aligned}
=e^{-\frac{\pi}{2} s} y\{-\sin t\} & =-e^{-\frac{\pi}{2} s}\left(\frac{1}{s^{2}+1}\right) \\
& =\frac{-e^{-\frac{\pi}{2} s}}{s^{2}+1} \\
\cos \left(t+\frac{\pi}{2}\right)=\cos t \cos \frac{\pi}{2}-\sin t \sin \frac{\pi}{2} & =-\sin t
\end{aligned}
$$

A Couple of Useful Results
The inverse form of this translation theorem is
(2) $\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a)$. Here $f(t)=\mathscr{L}^{-1}\{F(s)\}$

Example: Find $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\}$
we reed $\mathcal{L}^{\prime \prime}\left\{\frac{1}{s(s+1)}\right\}$ Use particle trace.

$$
\begin{aligned}
\frac{1}{s(s+1)}=\frac{A}{s}+\frac{B}{s+1} \Rightarrow 1 & =A(s+1)+B s \\
=\frac{1}{s}-\frac{1}{s+1} & s e t \\
s=0 \quad A & =1 \\
s & =-1 \quad B
\end{aligned}=-1 .
$$

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{1}{s(s+1)}\right\} & =\mathcal{L}^{-1}\left\{\frac{1}{s}-\frac{1}{s+1}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\} \\
& =1-e^{-t} \\
\mathcal{L}^{-1}\left\{\frac{e^{-2 s}}{s(s+1)}\right\} & =\left(1-e^{-(t-2)}\right) u(t-2)
\end{aligned}
$$

Section 16: Laplace Transforms of Derivatives and IVPs

Suppose f has a Laplace transform and that f is differentiable on $[0, \infty)$. Obtain an expression for the Laplace tranform of $f^{\prime}(t)$. (Assume f is of exponential order c for some c.)

$$
\begin{aligned}
& \mathscr{L}\left\{f^{\prime}(t)\right\}=\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t \\
& \text { wis int by pats } \\
& u=e^{-s t} \quad d u=-s e^{-s t} d t \\
& =\left.f(t) e^{-s t}\right|_{0} ^{\infty}+s \int_{0}^{\infty} e^{-s t} f(t) d t \\
& v=f(t) \quad d v=f^{\prime}(t) d t \\
& \sigma^{\circ} \quad=0-f(0) e^{\circ}+s \mathcal{Z}\{f(t)\} \\
& =\$ \mathcal{L}\{f(t)\}-f(0)
\end{aligned}
$$

Transforms of Derivatives
If $\mathscr{L}\{f(t)\}=F(s)$, we have $\mathscr{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$. We can use this relationship recursively to obtain Laplace transforms for higher derivatives of f.

For example

$$
\begin{aligned}
\mathscr{L}\left\{f^{\prime \prime}(t)\right\} & =\delta \mathscr{L}\left\{f^{\prime}(t)\right\}-f^{\prime}(0) \\
& =s(s \mathscr{L}\{f(t)\}-f(0))-f^{\prime}(0) \\
& =s^{2} \mathscr{L}\{f(t)\}-s f(0)-f^{\prime}(0) \\
& =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

Transforms of Derivatives

For $y=y(t)$ defined on $[0, \infty)$ having derivatives $y^{\prime}, y^{\prime \prime}$ and so forth, if

$$
\mathscr{L}\{y(t)\}=Y(s)
$$

then

$$
\begin{gathered}
\mathscr{L}\left\{\frac{d y}{d t}\right\}=s Y(s)-y(0) \\
\mathscr{L}\left\{\frac{d^{2} y}{d t^{2}}\right\}=s^{2} Y(s)-s y(0)-y^{\prime}(0) \\
\vdots \\
\mathscr{L}\left\{\frac{d^{n} y}{d t^{n}}\right\}=s^{n} Y(s)-s^{n-1} y(0)-s^{n-2} y^{\prime}(0)-\cdots-y^{(n-1)}(0)
\end{gathered}
$$

Differential Equation
For constants a, b, and c, take the Laplace transform of both sides of the equation

$$
\begin{array}{cl}
a y^{\prime \prime}+b y^{\prime}+c y=g(t), \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1} \\
\mathscr{L}\left\{a y^{\prime \prime}+b y^{\prime}+c y\right\}=\mathcal{L}\{g(t)\} & \text { hut } \\
a \mathcal{L}\left\{y^{\prime \prime}\right\}+b \mathcal{L}\left\{y^{\prime}\right\}+c \mathcal{L}\{y\}=\mathcal{L}\{g\} & \mathcal{L}\{y\}=Y(s) \\
& \mathcal{L}\{g\}=G(s) \\
a\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)+b(s Y(s)-y(0))+c Y(s)=G(s) & \\
a s^{2} Y(s)-a s y(0)-a y^{\prime}(0)+b s Y(s)-b y(0)+C Y(s)=G(s)
\end{array}
$$

$$
\begin{aligned}
& \left(a s^{2}+b s+c\right) Y(s)-a y_{0} s-a y_{1}-b y_{0}=G(s) \\
& \left(a s^{2}+b s+c\right) Y(s)=a y_{0} s+a y_{1}+b y_{0}+G(s) \\
& Y(s)=\frac{a y_{0} s+c y_{1}+b y_{0}}{a s^{2}+b s+c}+\frac{G(s)}{a s^{2}+b s+c}
\end{aligned}
$$

Letting

$$
Q(s)=a y_{0} s+a y_{1}+b y_{0}
$$

and $P(s)=a s^{2}+b s+c$

$$
\begin{aligned}
y(t) & =\mathcal{L}^{-1}\{Y(s)\} \\
& =\mathscr{L}^{-1}\left\{\frac{Q(s)}{p(s)}+\frac{G(s)}{p(s)}\right\}
\end{aligned}
$$

Solving IVPs

Figure: We use the Laplace transform to turn our DE into an algebraic equation. Solve this transformed equation, and then transform back.

General Form

We get

$$
Y(s)=\frac{Q(s)}{P(s)}+\frac{G(s)}{P(s)}
$$

where Q is a polynomial with coefficients determined by the initial conditions, G is the Laplace transform of $g(t)$ and P is the characteristic polynomial of the original equation.
$\mathscr{L}^{-1}\left\{\frac{Q(s)}{P(s)}\right\} \quad$ is called the zero input response,
and
$\mathscr{L}^{-1}\left\{\frac{G(s)}{P(s)}\right\} \quad$ is called the zero state response.

