October 26 Math 2306 sec. 56 Fall 2017

Section 15: Shift Theorems

Theorem: (Translation in *s*) Suppose $\mathscr{L} \{f(t)\} = F(s)$. Then for any real number *a*

$$\mathscr{L}\left\{\boldsymbol{e}^{\boldsymbol{a}t}\boldsymbol{f}(t)\right\}=\boldsymbol{F}(\boldsymbol{s}-\boldsymbol{a}).$$

For example,

$$\mathscr{L}\left\{t^{n}\right\} = \frac{n!}{s^{n+1}} \implies \mathscr{L}\left\{e^{at}t^{n}\right\} = \frac{n!}{(s-a)^{n+1}}.$$
$$\mathscr{L}\left\{\cos(kt)\right\} = \frac{s}{s^{2}+k^{2}} \implies \mathscr{L}\left\{e^{at}\cos(kt)\right\} = \frac{s-a}{(s-a)^{2}+k^{2}}.$$

The Unit Step Function

Let $a \ge 0$. The unit step function $\mathscr{U}(t-a)$ is defined by

$$\mathscr{U}(t-a) = \left\{ egin{array}{cc} 0, & 0 \leq t < a \ 1, & t \geq a \end{array}
ight.$$

Figure: We can use the unit step function to provide convenient expressions for piecewise defined functions.

October 26, 2017

2/41

Translation in t

Given a function f(t) for $t \ge 0$, and a number a > 0

$$f(t-a)\mathscr{U}(t-a) = \begin{cases} 0, & 0 \le t < a \\ f(t-a), & t \ge a \end{cases}$$

Figure: The function $f(t - a) \mathcal{U}(t - a)$ has the graph of *f* shifted *a* units to the right with value of zero for *t* to the left of *a*.

October 26, 2017

3/41

Theorem (translation in *t*) If $F(s) = \mathscr{L}{f(t)}$ and a > 0, then

$$\mathscr{L}{f(t-a)}\mathscr{U}(t-a)} = e^{-as}F(s).$$

In particular,

$$\mathscr{L}\{\mathscr{U}(t-a)\}=\frac{e^{-as}}{s}.$$

As another example,

$$\mathscr{L}{t^n} = \frac{n!}{s^{n+1}} \implies \mathscr{L}{(t-a)^n}\mathscr{U}(t-a) = \frac{n!e^{-as}}{s^{n+1}}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Find
$$\mathscr{L}\{\mathscr{U}(t-a)\}$$

 $\mathscr{U}[t-a]: \begin{cases} 0, & o \le t < a \\ 1, & t > a \end{cases}$
 $\mathscr{B}_{5} definition$
 $\mathscr{U}\{\mathsf{U}(t-a)\} = \int_{0}^{\infty} e^{-st} \mathscr{U}[t-a] dt$
 $= \int_{0}^{a} e^{-st} \cdot 0 dt + \int_{0}^{\infty} e^{-st} \cdot 1 dt$
 $= \int_{0}^{\infty} e^{-st} dt$
 $= \int_{0}^{\infty} e^{-st} dt$
 $= \int_{0}^{\infty} e^{-st} dt$
 $= \int_{0}^{\infty} e^{-s(\tau+a)} d\tau$
 $= \int_{0}^{\infty} e^{-s(\tau+a)} d\tau$

Note
$$e^{-s(\tau+\alpha)} - s\tau - s\alpha - s\tau - s\alpha$$

= $e^{-s\tau} - e^{-s\tau} - s\alpha$

October 26, 2017 6 / 41

<ロ> <四> <四> <四> <四> <四</p>

Example

Find the Laplace transform $\mathscr{L} \{h(t)\}$ where

$$h(t) = \begin{cases} 1, & 0 \le t < 1 \\ t, & t \ge 1 \end{cases}$$

(a) First write *h* in terms of unit step functions.

イロト イポト イヨト イヨト

э

7/41

October 26, 2017

Note that if f(t) = t, then f(t-1) = t-1 so f(t-1)U(t-1) = (t-1)U(t-1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Example Continued...

(b) Now use the fact that $h(t) = 1 + (t-1)\mathcal{U}(t-1)$ to find $\mathcal{L}\{h\}$.

$$\begin{aligned} z \{ k(t) \} &= z \{ 1 + (t-i)u(t-i) \} \\ &= z \{ 1 \} + z \{ (t-i)u(t-i) \} \\ &= \frac{1}{5} + \frac{e^{5}}{5^{2}} \\ &* z \{ t \} = \frac{1}{5^{2}} \end{aligned}$$

October 26, 2017 9 / 41

<ロ> <四> <四> <四> <四> <四</p>

A Couple of Useful Results

Another formulation of this translation theorem is

(1)
$$\mathscr{L}\lbrace g(t)\mathscr{U}(t-a)\rbrace = e^{-as}\mathscr{L}\lbrace g(t+a)\rbrace.$$

Note $g(t) = g\left((t+a)-a\right)$
Example: Find $\mathscr{L}\lbrace \cos t \mathscr{U}\left(t-\frac{\pi}{2}\right)\rbrace = e^{-\frac{\pi}{2}s} \mathscr{L}\lbrace C_{os}\left(t+\frac{\pi}{2}\right)\rbrace$
 $= e^{-\frac{\pi}{2}s} \mathscr{L}\lbrace C_{os}\left(t+\frac{\pi}{2}\right)\rbrace$
 $= e^{-\frac{\pi}{2}s} (\frac{1}{s^{2}+1})$
 $= e^{-\frac{\pi}{2}s} (\frac{1}{s^{2}+1})$
 $C_{os}\left(t+\frac{\pi}{2}\right) = C_{os}t C_{os}\frac{\pi}{2} - Sint Sin\frac{\pi}{2} = -Sint$

October 26, 2017 10 / 41

э

イロト イポト イヨト イヨト

A Couple of Useful Results

The inverse form of this translation theorem is

(2)
$$\mathscr{L}^{-1}\{e^{-as}F(s)\}=f(t-a)\mathscr{U}(t-a).$$
 Here $f(t)=\int \{F(s)\}$

Example: Find
$$\mathscr{L}^{-1}\left\{\frac{e^{-2s}}{s(s+1)}\right\}$$

we need $\mathscr{J}'\left\{\frac{1}{s(s+1)}\right\}$ Use particle free.
 $\frac{1}{s(s+1)} = \frac{A}{s} + \frac{B}{s+1} \Rightarrow 1 = A(s+1) + Bs$
set $s=0$ $A=1$
 $= \frac{1}{s} - \frac{1}{s+1}$ $S=-1$

October 26, 2017 12 / 41

-1

$$\begin{aligned} \mathcal{Z}^{-1}\left\{\frac{1}{S(S+1)}\right\} &= \mathcal{Y}^{-1}\left\{\frac{1}{S} - \frac{1}{S+1}\right\} \\ &= \mathcal{Y}^{-1}\left\{\frac{1}{S}\right\} - \mathcal{Y}^{-1}\left\{\frac{1}{S+1}\right\} \\ &= 1 - \bar{e}^{\frac{1}{2}} \end{aligned}$$

$$\mathcal{Y}\left\{\frac{e^{2s}}{s(s+1)}\right\} = \left(1 - e^{-(t-2)}\right)\mathcal{U}(t-2)$$

October 26, 2017 13 / 41

・ロト・西ト・ヨト・ヨー うへの

Section 16: Laplace Transforms of Derivatives and IVPs

Suppose *f* has a Laplace transform and that *f* is differentiable on $[0, \infty)$. Obtain an expression for the Laplace transform of f'(t). (Assume *f* is of exponential order *c* for some *c*.)

Transforms of Derivatives

If $\mathscr{L} \{f(t)\} = F(s)$, we have $\mathscr{L} \{f'(t)\} = sF(s) - f(0)$. We can use this relationship recursively to obtain Laplace transforms for higher derivatives of *f*.

For example

 $\mathscr{L}\left\{f''(t)\right\} = \mathscr{L}\left\{f'(t)\right\} - f'(s)$ $= c \left(2 \pi \{ t(t) \} - t(0) \right) - t_{1}(0)$ = s2 4 [f(k)] - sf(w) - f'(w) $= s^{2} F(s) - s f(o) - f'(o)$

Transforms of Derivatives

For y = y(t) defined on $[0, \infty)$ having derivatives y', y'' and so forth, if

 $\mathscr{L}\left\{\mathbf{y}(t)\right\}=\mathbf{Y}(\mathbf{s}),$

then

$$\mathscr{L}\left\{\frac{dy}{dt}\right\} = sY(s) - y(0),$$
$$\mathscr{L}\left\{\frac{d^2y}{dt^2}\right\} = s^2Y(s) - sy(0) - y'(0),$$
$$\vdots$$
$$\mathscr{L}\left\{\frac{d^ny}{dt^n}\right\} = s^nY(s) - s^{n-1}y(0) - s^{n-2}y'(0) - \dots - y^{(n-1)}(0).$$

October 26, 2017 18 / 41

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Differential Equation

For constants *a*, *b*, and *c*, take the Laplace transform of both sides of the equation

$$ay'' + by' + cy = g(t), \quad y(0) = y_0, \quad y'(0) = y_1$$

$$y \{ a_{3}'' + b_{3}' + c_{3} \} = y \{ g | U \}$$

$$ay \{ y'' \} + by \{ y' \} + cy \{ y_{3} \} = y \{ g \}$$

$$y \{ y'' \} + by \{ y' \} + cy \{ y_{3} \} = y \{ g \}$$

$$y \{ y_{3} \} = Y(s)$$

$$y \{ g \} = G(s)$$

$$a (s^{2}Y(s) - sy (s) - y'(s) + b(sY(s) - y(s)) + cY(s) = G(s)$$

$$a (s^{2}Y(s) - as y(s) - ay'(s) + b(sY(s) - by(s)) + cY(s) = G(s)$$

 $(as^2 + bs + c)Y(s) - ay_0s - ay_1 - by_0 = G(s)$

$$U(s) = \frac{\Delta y_0 s + \Delta y_1 + b y_0}{\Delta s^2 + b s + c} + \frac{G(s)}{\Delta s^2 + b s + c}$$

October 26, 2017

20/41

Letting Q(s) = ayos + ay, + byo ord $P(s) = \alpha s^2 + b s + C$

y (4) = y (Y (5) } $= \int_{-1}^{-1} \left\{ \frac{Q(s)}{\varphi(s)} + \frac{G(s)}{\varphi(s)} \right\}$

October 26, 2017 21 / 41

Solving IVPs

Figure: We use the Laplace transform to turn our DE into an algebraic equation. Solve this transformed equation, and then transform back.

General Form

We get

$$Y(s) = rac{Q(s)}{P(s)} + rac{G(s)}{P(s)}$$

where Q is a polynomial with coefficients determined by the initial conditions, G is the Laplace transform of g(t) and P is the **characteristic polynomial** of the original equation.

$$\mathscr{L}^{-1}\left\{\frac{Q(s)}{P(s)}\right\}$$

is called the zero input response,

and

$$\mathscr{L}^{-1}\left\{\frac{G(s)}{P(s)}\right\}$$
 is called the **zero state response**.