October 26 Math 2306 sec. 57 Fall 2017

Section 15: Shift Theorems

Theorem: (Translation in s) Suppose .Z {f(t)} = F(s). Then for any
real number a

Z{e¥f(t)} = F(s - a).

For example,
2= o gfetm= T
n+1 - (S _ a)n+1 :
s s—a
k -2 at k _
& {cos(kt)} gie = # {e* cos(kt)}

(s—a)+ k2
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The Unit Step Function
Let a > 0. The unit step function % (t — a) is defined by

0, 0<t<a
%(t—a):{1 t>a

Z(t - a)

Figure: We can use the unit step function to provide convenient expressions
for piecewise defined functions.
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Translation in t
Given a function f(t) for t > 0, and a number a > 0
0, 0<t<a
f(t_a)%(t_a)_{f(ta), t>a .

¥ ‘.

71 flt—a)%(t—a)

a

Figure: The function f(t — a) (t — a) has the graph of f shifted a units to the
right with value of zero for ¢ to the left of a.
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Theorem (translation in )
If F(s) = Z{f(t)} and a > 0, then

L{f(t—a)%(t—a)} = e ¥F(s).

In particular,
efas

L{w(t-a)} =

As another example,

n!

nle—&
L{t"} = s -

o = t-au-a) = —
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Find Z{% (t — a)}
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Example

Find the Laplace transform . {h(t)} where

1, 0<t<1
h(t):{t t>1

(a) First write h in terms of unit step functions.

heey = | - Jute- 1) + EUle-0)

e ule-) (k)

I+ (- Ulk-1)
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Noke iF O E Ban Fle-v:= E-)

<o

(£-DULE-1) = Le-0 eV

Loc {lo=t.
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Example Continued...

(b) Now use the fact that h(t) =1+ (t — 1) (t — 1) to find £{h}.

d fhwt- 1 +(e~|)uwn}
=9y« 4 {(e-(wu—ﬂx

-s
= + £ _

\
9 L’

£ il
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A Couple of Useful Results
Another formulation of this translation theorem is

(1) ZL{g()%(t-a)} = e *.L{g(t+a)}.
Noke DO(LJ-%(€+&'G~)

;T

Example: Find Z{cost%( 2)} : e

P
—
k2

) o {Cer ((z-r%r\\g

Cos(£+T) = Gek G T = Sink Sing

= -Smt

eld

JEREER
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A Couple of Useful Results

The inverse form of this translation theorem is

2) 2 e *F(s)} = f(t-a)%(t-a). y{$ [Q)}-. Y

e 2s '\ .28 |
s+1 : e Sls+)

Example: Find £~ {
% r?o.,\'\"( -(rac)\ S
(e e d { S(s+1)

(
S(s+)

< A Q_ = \-, A(§¥\\+Rg
S 7w
Ser €70 A"

g:-1 . B=-\
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Section 16: Laplace Transforms of Derivatives and
IVPs

Suppose f has a Laplace transform and that f is differentiable on

[0, o). Obtain an expression for the Laplace tranform of /(). (Assume
f is of exponential order ¢ for some c.)

lnd, by pats
2{F(t)} = / &1f (1)

-st
w= e-sP AU\'—'SQ
bo

o \
aomé“\ + s&;ﬁc(uu e asfdk

(-]

:0- foe + s j{“ﬂ}
s {fwi- fo
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Transforms of Derivatives

If £ {f(t)} = F(s), we have £ {f'(t)} = sF(s) — f(0). We can use this
relationship recursively to obtain Laplace transforms for higher
derivatives of f.

For example

2irmr=s ¢ {rwl- fo
cs (s lhd - ) - Fo
g y{hal- sfo - Fo
: T - o £ - flio
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Transforms of Derivatives

For y = y(t) defined on [0, c0) having derivatives y’, y” and so forth, if

Z{y(t)} = Y(s),

then 4
7 {d{} — s¥(s) — y(0),

&z { d”y} =5"Y(s) =" y(0) = s"2y/(0) — - - — y""(0).
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Differential Equation

For constants a, b, and c, take the Laplace transform of both sides of

the equation
ay"+by' +cy=g(t), y)=yo, y(0)=w

y{a\d'-f L*o\ + C"b} z ig%uﬂ} R :f{"a%‘- Qe
;’iﬁ" Gy

ad iyt +‘°j{\;ﬁ* ety = 2 (53

a(SIQsz-g\O(OX—\a'lQS-('\o (S"l’ts) - \OM) ) = 6(})
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as" P -say. - ), +o s bys + C TPy = (56)

(as"-«\ss\aaﬁ)u) - S0Yye-Gy, -y, = G(g)

(as\ bs+C) Yy = ay,S + ay, thbys  + GG5)

LJJ' Qts\ - abas +0Y, "\0\30 ond

P = as'+ bs+ C
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Solving IVPs

Apply Laplace

Transform

/ Solution
y(t)
(obtained unknown
from ¥(s)) ¥(s) /
/Solution
Y(s)
Take Inverse Laplace (obtained
Transform

by
algebra)

Figure: We use the Laplace transform to turn our DE into an algebraic

equation. Solve this transformed equation, and then trans;orm back.

DA
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General Form

We get
Q(s) , G(s)
Y(s) =
9= B " P(s)
where Q is a polynomial with coefficients determined by the initial
conditions, G is the Laplace transform of g(t) and P is the
characteristic polynomial of the original equation.

z1 { ggzg } is called the zero input response,

7 { ggzi } is called the zero state response.
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