October 26 Math 3260 sec. 57 Fall 2017

Section 6.3: Orthogonal Projections

Equating points with position vectors, we may wish to find the point $\hat{\mathbf{y}}$ in a subspace W of \mathbb{R}^{n} that is closest to a given point \mathbf{y}.

Figure: Illustration of an orthogonal projection. Note that $\operatorname{dist}(\mathbf{y}, \hat{\mathbf{y}})$ is the shortest distance between \mathbf{y} and the points on W.

Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^{n}. Each vector \mathbf{y} in \mathbb{R}^{n} can be written uniquely as a sum

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp}.
If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is any orthogonal basis for W, then

$$
\hat{\mathbf{y}}=\sum_{j=1}^{p}\left(\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}}\right) \mathbf{u}_{j}, \quad \text { and } \quad \mathbf{z}=\mathbf{y}-\hat{\mathbf{y}} .
$$

Remark: Note that the basis must be orthogonal, but otherwise the vector $\hat{\mathbf{y}}$ is independent of the particular basis used!

Remark: The vector $\hat{\mathbf{y}}$ is called the orthogonal projection of \mathbf{y} onto W. We can denote it

$$
\operatorname{proj}_{W} \mathbf{y} .
$$

Example

Let $\mathbf{y}=\left[\begin{array}{l}0 \\ 0 \\ 9\end{array}\right]$ and

$$
W=\operatorname{span}\left\{\left[\begin{array}{l}
2 \\
1 \\
2 \\
\vec{u}_{1}
\end{array}\right],\left[\begin{array}{c}
-2 \\
2 \\
1 \\
\vec{u}_{2}
\end{array}\right]\right\} .
$$

Find the orthogonal projection of \mathbf{y} onto W, and determine the distance between the point $(0,0,9)$ and the plane W.

$$
\begin{aligned}
& \hat{y}=\frac{\vec{u}_{1} \cdot \vec{y}^{\prime}}{\left\|\vec{u}_{1}\right\|^{2}} \vec{u}_{1}+\frac{\vec{u}_{2} \cdot \vec{y}^{\prime}}{\left\|\vec{u}_{2}\right\|^{2}} \vec{u}_{2} \\
& \quad\left\|\vec{u}_{1}\right\|^{2}=4+1+4=9 \text { and }\left\|\vec{u}_{2}\right\|^{2}=4+4+1=9
\end{aligned}
$$

$$
\begin{gathered}
\vec{u}_{1} \cdot \vec{y}=9 \cdot 2=18 \text { ard } \vec{u}_{2} \cdot \vec{y}=9 \cdot 1=9 \\
\hat{y}=\frac{18}{9}\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]+\frac{9}{9}\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]=2\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]+\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
5
\end{array}\right] \\
\vec{y}=\hat{y}+\vec{z} \text { when } \vec{z} \text { ir in } W^{\perp} \\
\vec{z}=\vec{y}-\hat{y}=\left[\begin{array}{l}
0 \\
0 \\
9
\end{array}\right]-\left[\begin{array}{l}
2 \\
4 \\
3
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-4 \\
4
\end{array}\right]
\end{gathered}
$$

distance from \vec{y} to w is

$$
\|\vec{z}\|=\sqrt{4+16+16}=6
$$

Computing Orthogonal Projections

Theorem: If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis of a subspace W of \mathbb{R}^{n}, and \mathbf{y} is any vector in \mathbb{R}^{n} then

$$
\operatorname{proj}_{W} \mathbf{y}=\sum_{j=1}^{p}\left(\mathbf{y} \cdot \mathbf{u}_{j}\right) \mathbf{u}_{j} .
$$

And, if U is the matrix $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \cdots & \mathbf{u}_{p}\end{array}\right]$, then the above is equivalent to

$$
\operatorname{proj}_{W} \mathbf{y}=U U^{T} \mathbf{y} .
$$

Remark: In general, U is not square; it's $n \times p$. So even though $U U^{\top}$ will be a square matrix, it is not the same matrix as $U^{\top} U$ and it is not the identity matrix.

Example

$$
W=\operatorname{Span}\left\{\left[\begin{array}{l}
\vec{V}_{1} \\
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]\right\}
$$

Find an orthonormal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ for W. Then compute the matrices $U^{\top} U$ and $U U^{\top}$ where $U=\left[\begin{array}{ll}\mathbf{u}_{1} & \mathbf{u}_{2}\end{array}\right]$.

$$
\begin{aligned}
& \left\|\vec{v}_{1}\right\|=3=\left\|\vec{v}_{2}\right\| \\
& \text { Toke } \quad \vec{u}_{1}=\frac{1}{\left\|\vec{v}_{1}\right\|} \vec{v}_{1}=\left[\begin{array}{l}
2 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right] \\
& \vec{u}_{2}=\frac{1}{\left\|\vec{v}_{2}\right\|} \quad \vec{v}_{2}=\left[\begin{array}{c}
-2 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
U=\left[\begin{array}{cc}
2 / 3 & -2 / 3 \\
1 / 3 & 2 / 3 \\
2 / 3 & 1 / 3
\end{array}\right] \quad U^{\top}=\left[\begin{array}{ccc}
2 / 3 & 1 / 3 & 2 / 3 \\
-2 / 3 & 2 / 3 & 1 / 3
\end{array}\right] \\
U^{\top} U=\left[\begin{array}{ccc}
2 / 3 & 1 / 3 & 2 / 3 \\
2 / 3 & 2 / 3 & 1 / 3
\end{array}\right]\left[\begin{array}{cc}
2 / 3 & -2 / 3 \\
1 / 3 & 2 / 3 \\
2 / 3 & 1 / 3
\end{array}\right] \\
=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
U U^{\top}=\left[\begin{array}{cc}
2 / 3 & -2 / 3 \\
1 / 3 & 2 / 3 \\
2 / 3 & 1 / 3
\end{array}\right]\left[\begin{array}{ccc}
2 / 3 & 1 / 3 & 2 / 3 \\
-2 / 3 & 2 / 3 & 1 / 3
\end{array}\right] \\
=\left[\begin{array}{ccc}
\frac{8}{9} & -\frac{2}{9} & \frac{2}{9} \\
-\frac{2}{9} & \frac{5}{9} & \frac{4}{9} \\
\frac{2}{9} & \frac{4}{9} & \frac{5}{9}
\end{array}\right]
\end{gathered}
$$

Note $\left(U U^{\top}\right)^{\top}=\left(U^{\top}\right)^{\top} U^{\top}=U U^{\top}$

Example

$$
W=\operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]\right\} \quad \text { and } \quad \mathbf{y}=\left[\begin{array}{l}
0 \\
0 \\
9
\end{array}\right]
$$

Use the matrix formulation to find $\operatorname{proj}_{w} \mathbf{y}$.

$$
\hat{y}=U U^{\top} \vec{y}=\left[\begin{array}{ccc}
\frac{8}{9} & -\frac{2}{9} & \frac{2}{9} \\
\frac{-2}{9} & \frac{5}{9} & \frac{4}{9} \\
\frac{2}{9} & \frac{4}{5} & \frac{5}{9}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
9
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
5
\end{array}\right]
$$

Best Approximation Theorem

Suppose W is a subspace of \mathbb{R}^{n} and \mathbf{y} is a vector in \mathbb{R}^{n}. If $\hat{\mathbf{y}}$ is the orthogonal projection of \mathbf{y} onto W, then $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y}. That is

$$
\|\mathbf{y}-\hat{\mathbf{y}}\| \leq\|\mathbf{y}-\mathbf{v}\|
$$

for every point \mathbf{v} in W, and equality occurs if and only if $\mathbf{v}=\hat{\mathbf{y}}$.

Approximate Solution to Inconsisitent System

Suppose we wish to solve a system $\mathbf{A x}=\mathbf{b}$ but it is inconsistent. Note that this means
b is not in $\operatorname{Col} A$.

We seek an approximate solution $\hat{\mathbf{x}}$ by considering instead a system

$$
A \hat{\mathbf{x}}=\hat{\mathbf{b}} .
$$

To be consistent, we insist that $\hat{\mathbf{b}}$ is in ColA.
Question: Of all possible vectors in ColA, how should we choose $\hat{\mathbf{b}}$?

Using the Orthogonal Projection

The best approximation $\hat{\mathbf{b}}$ to \mathbf{b} in Col A is the orthogonal projection of \mathbf{b} onto ColA!

Recall: The orthogonal complement to the column space of A is the null space of A^{T}. That is

$$
[\operatorname{Col} A]^{\perp}=\operatorname{Nul} A^{T} .
$$

Least Squares Problem

Suppose we wish to best approximate a solution to

$$
A \mathbf{x}=\mathbf{b}
$$

Let $\quad \mathbf{b}=\hat{\mathbf{b}}+\mathbf{z}$
where $\hat{\mathbf{b}}$ is in $\operatorname{Col} A$ and \mathbf{z} is orthogonal to $\operatorname{Col} A$.

Show that the system $A^{\top} A \mathbf{x}=A^{\top} \mathbf{b}$ is consistent.
Note $\vec{A} \vec{x}$ is never \vec{b}.
Letting $\vec{b}=\hat{b}+\vec{z}$ when $\hat{b}=\operatorname{pro}_{\text {Coed }} \vec{b}^{\vec{b}}$

$$
\begin{aligned}
& \text { and } \begin{aligned}
& z_{\text {is in }}[\text { col } A]^{\perp} \\
& A^{\top} \vec{b}=A^{\top}(\hat{b}+\vec{z})=A^{\top} \hat{b}+A^{\top} z \\
&=A^{\top} \hat{b}+\overrightarrow{0} \\
&=A^{\top} \hat{b}
\end{aligned}
\end{aligned}
$$

So

$$
A^{\top} A \vec{x}=A^{\top} \hat{b}
$$

There is a solution to $A \vec{x}=\hat{b}$!
So there is sone \hat{x} such that
$A \hat{x}=\hat{b}$. The system is
the consistent system

$$
A^{\top} A \vec{x}=A^{\top} \hat{b}
$$

for $\vec{x}=\hat{x}$

$$
A^{\top} A \hat{x}=A^{\top} \hat{b} \Rightarrow A^{\top} \hat{b}=A^{\top} \hat{b}
$$

an identity.

Least Squares Problem

The system $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is called the normal equations for the system $A \mathbf{x}=\mathbf{b}$.

Theorem: If the columns of A are linearly independent, then there is a unique least squares solution $\hat{\mathbf{x}}$ to the equation $A \mathbf{x}=\mathbf{b}$ that minimizes the error in the sense that

$$
\|\mathbf{b}-A \hat{\mathbf{x}}\| \leq\|\mathbf{b}-A \mathbf{x}\|
$$

for all \mathbf{x} in \mathbb{R}^{n}.

Example: Best Fit Line

Figure: Given a set of data, we wish to determine the line $y=m x+b$ of best fit.

Example
Find the line of best fit to the data set

$$
\{(-1,0),(0,1),(1,2),(2,4)\}
$$

we wont a line $y=n x+b$. For these points to be on the line

$$
\begin{aligned}
& -1 m+b=0 \\
& 0 m+b=1 \\
& 1 m+b=2 \\
& 2 m+b=4
\end{aligned} \quad \Rightarrow\left[\begin{array}{cc}
-1 & 1 \\
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
m \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2 \\
4
\end{array}\right]
$$

$$
A=\left[\begin{array}{cc}
-1 & 1 \\
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right] \quad \vec{x}=\left[\begin{array}{l}
n \\
b
\end{array}\right] \quad \vec{b}=\left[\begin{array}{l}
0 \\
1 \\
2 \\
4
\end{array}\right]
$$

we conside $A^{\top} A \vec{x}=A^{\top} \stackrel{\rightharpoonup}{b}$

$$
\begin{aligned}
& A^{\top} A=\left[\begin{array}{cccc}
-1 & 0 & 1 & 2 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
6 & 2 \\
2 & 4
\end{array}\right] \\
& A^{\top} \vec{b}=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
2 \\
4
\end{array}\right]=\left[\begin{array}{c}
10 \\
7
\end{array}\right]
\end{aligned}
$$

well soluae

$$
\begin{gathered}
{\left[\begin{array}{ll}
6 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
m \\
b
\end{array}\right]=\left[\begin{array}{l}
10 \\
7
\end{array}\right]} \\
\operatorname{det}\left(A^{\top} A\right)=24-4=20 \\
\left(A^{\top} A\right)^{-1}=\frac{1}{20}\left[\begin{array}{cc}
4 & -2 \\
-2 & 6
\end{array}\right]=\frac{1}{10}\left[\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right] \\
{\left[\begin{array}{l}
M \\
b
\end{array}\right]=\frac{1}{10}\left[\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
10 \\
7
\end{array}\right]=\frac{1}{10}\left[\begin{array}{l}
13 \\
11
\end{array}\right]} \\
M=\frac{13}{10}, b=\frac{11}{10}
\end{gathered}
$$

The line of best fit is

$$
y=\frac{13}{10} x+\frac{11}{10}
$$

Figure: Our data set along with the least squares, best fit line.

Section 6.4: Gram-Schmidt Orthogonalization
Question: Given any-old basis for a subspace W of \mathbb{R}^{n}, can we construct an orthogonal basis for that same space?

Example: Let $W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ -1\end{array}\right]\right\}$. Find an orthogonal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ that spans W.

We need $\stackrel{\rightharpoonup}{v}_{1}, \stackrel{\rightharpoonup}{v}_{2}$ to be in W, hence linear combinations of \vec{x}_{1} and \vec{x}_{2}.

We can start with $\vec{v}_{1}=\vec{x}_{1}$. Let

$$
\vec{v}_{2}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

C2 cont be zero due to lineor indupendence. So let's take $c_{2}=1$.
$\vec{v}_{2}=\vec{x}_{2}+C_{1} \vec{x}_{1}$. we requine $\vec{v}_{1} \cdot \vec{v}_{2}=0$

$$
\begin{aligned}
\vec{V}_{1} \cdot \vec{V}_{2} & =\vec{V}_{1} \cdot\left(\vec{x}_{2}+c_{1} \vec{x}_{1}\right)=0 \\
& =\vec{V}_{1} \cdot \vec{X}_{2}+C_{1} \vec{V}_{1} \cdot \vec{x}_{1}=0 \quad \text { using } \vec{V}_{1}=\vec{x}_{1} \\
0 & =\vec{V}_{1} \cdot \vec{x}_{2}+C_{1} \vec{V}_{1} \cdot \vec{V}_{1} \\
0 & =\vec{V}_{1} \cdot \vec{x}_{2}+c_{1}\left\|\vec{V}_{1}\right\|^{2} \\
& \Rightarrow \quad c_{1}=\frac{-\vec{V}_{1} \cdot \vec{x}_{2}}{\left\|\vec{V}_{1}\right\|^{2}}
\end{aligned}
$$

So it should be that

$$
\vec{v}_{2}=\vec{x}_{2}-\frac{\stackrel{\rightharpoonup}{v}_{1} \cdot \vec{x}_{2}}{\left\|v_{1}\right\|^{2}} \vec{v}_{1}
$$

we had $\vec{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \quad \vec{x}_{2}=\left[\begin{array}{c}0 \\ -1 \\ -1\end{array}\right]$

$$
\begin{aligned}
& \vec{v}_{1} \cdot \vec{x}_{2}=-2,\left\|\vec{v}_{1}\right\|^{2}=1+1+1=3 \\
& \vec{v}_{2}=\left[\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right]+\frac{2}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 / 3 \\
-1 / 3 \\
-1 / 3
\end{array}\right]
\end{aligned}
$$

The new, orthogond basis is

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
2 / 3 \\
-1 / 3 \\
-1 / 3
\end{array}\right]\right\}
$$

Theorem: Gram Schmidt Process

Let $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ be any basis for the nonzero subspace W of \mathbb{R}^{n}. Define the set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ via

$$
\begin{aligned}
\mathbf{v}_{1} & =\mathbf{x}_{1} \\
\mathbf{v}_{2} & =\mathbf{x}_{2}-\left(\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} \\
\mathbf{v}_{3} & =\mathbf{x}_{3}-\left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}-\left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2} \\
& \vdots \\
\mathbf{v}_{p} & =\mathbf{x}_{p}-\sum_{j=1}^{p-1}\left(\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{j}}{\mathbf{v}_{j} \cdot \mathbf{v}_{j}}\right) \mathbf{v}_{j} .
\end{aligned}
$$

Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthogonal basis for W. Moreover, for each $k=1, \ldots, p$

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}
$$

