October 26 Math 3260 sec. 57 Fall 2017 Section 6.3: Orthogonal Projections

Equating points with position vectors, we may wish to find the point $\hat{\mathbf{y}}$ in a subspace W of \mathbb{R}^n that is *closest* to a given point \mathbf{y} .

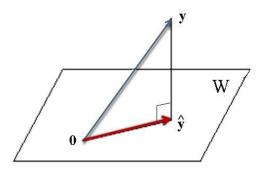


Figure: Illustration of an orthogonal projection. Note that $dist(\mathbf{y}, \hat{\mathbf{y}})$ is the shortest distance between \mathbf{y} and the points on W.

October 25, 2017 1 / 39

Orthogonal Decomposition Theorem

Let *W* be a subspace of \mathbb{R}^n . Each vector **y** in \mathbb{R}^n can be written uniquely as a sum

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} .

If $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is any orthogonal basis for W, then

$$\hat{\mathbf{y}} = \sum_{j=1}^{p} \left(\frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j} \right) \mathbf{u}_j, \text{ and } \mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}.$$

Remark: Note that the basis must be orthogonal, but otherwise the vector $\hat{\mathbf{y}}$ is **independent** of the particular basis used!

Remark: The vector $\hat{\mathbf{y}}$ is called the **orthogonal projection of y onto** *W*. We can denote it

proj_W **y**.

イロト 不得 トイヨト イヨト 二日

Example
Let
$$\mathbf{y} = \begin{bmatrix} 0\\0\\9 \end{bmatrix}$$
 and

$$\mathcal{N} = \operatorname{Span} \left\{ \begin{bmatrix} 2\\1\\2\\ \\ \mathbf{\zeta}_{1} \end{bmatrix}, \begin{bmatrix} -2\\2\\1\\ \\ \mathbf{\zeta}_{1} \end{bmatrix} \right\}.$$

Find the orthogonal projection of **y** onto W, and determine the distance between the point (0, 0, 9) and the plane W.

$$\hat{y} = \frac{\vec{u}_{1} \cdot \vec{y}}{\|\vec{u}_{1}\|^{2}} \vec{u}_{1} + \frac{\vec{u}_{2} \cdot \vec{y}}{\|\vec{u}_{1}\|} \vec{u}_{2}$$

$$\|\vec{u}_{1}\|^{2} = 4 + 1 + 4 = 4 \quad \text{and} \quad \|\vec{u}_{1}\|^{2} = 4 + 4 + 1 = 4$$

October 25, 2017 3 / 39

$$\hat{y} = \frac{18}{9} \begin{bmatrix} 2\\1\\2\\2 \end{bmatrix} + \frac{9}{9} \begin{bmatrix} -2\\2\\1\\1 \end{bmatrix} = \hat{y} \begin{bmatrix} 2\\1\\2\\2\\1 \end{bmatrix} + \begin{bmatrix} -2\\2\\1\\2 \end{bmatrix} + \begin{bmatrix} 2\\1\\2\\3 \end{bmatrix}$$

$$y = \hat{y} + \hat{z}$$
 where \hat{z} is in W^{\perp}
 $\hat{z} = \hat{y} - \hat{y} = \begin{bmatrix} \hat{v} \\ \hat{v} \\ \eta \end{bmatrix} - \begin{bmatrix} \hat{z} \\ \neg \\ z \end{bmatrix} = \begin{bmatrix} -\hat{z} \\ \neg \\ \neg \end{bmatrix}$

October 25, 2017 4 / 39

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = 少へぐ October 25, 2017 5/39

Computing Orthogonal Projections

Theorem: If $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is an orthonormal basis of a subspace W of \mathbb{R}^n , and \mathbf{y} is any vector in \mathbb{R}^n then

$$\operatorname{proj}_{W} \mathbf{y} = \sum_{j=1}^{p} \left(\mathbf{y} \cdot \mathbf{u}_{j} \right) \mathbf{u}_{j}.$$

And, if *U* is the matrix $U = [\mathbf{u}_1 \cdots \mathbf{u}_p]$, then the above is equivalent to

$$\mathsf{proj}_{W} \, \mathbf{y} = U U' \, \mathbf{y}$$

Remark: In general, *U* is not square; it's $n \times p$. So even though UU^T will be a square matrix, it is not the same matrix as $U^T U$ and it is not the identity matrix.

$$\mathcal{N} = \operatorname{Span} \left\{ \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} -2\\2\\1 \end{bmatrix} \right\}$$

Find an orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ for *W*. Then compute the matrices $U^T U$ and UU^T where $U = [\mathbf{u}_1 \ \mathbf{u}_2]$.

$$\|\vec{v}_{1}\| = 3 = \|\vec{v}_{2}\| \qquad \begin{cases} z/3 \\ y_{3} \\ z/3 \\$$

< ロ > < 同 > < 回 > < 回 >

$$U: \begin{bmatrix} 2/3 & -2/3 \\ -2/3 & 2/3 \\ 2/3 & -2/3 \\ -2/3 & -2/3$$

$$\bigcup^{\mathsf{T}} \bigcup = \begin{bmatrix} 2l_3 & l_3 & l_3 \\ .2l_3 & 2l_3 & l_3 \end{bmatrix} \begin{bmatrix} 2l_3 & .2l_3 \\ .2l_3 & 2l_3 & l_3 \end{bmatrix}$$

 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

<ロ> <四> <四> <三</td>

$$U U^{T} : \begin{bmatrix} 2/3 & -2/3 \\ 1/3 & 2/3 \\ 2/3 & 1/3 \end{bmatrix} \begin{bmatrix} 2/3 & 1/3 & 2/3 \\ -2/3 & 2/3 & 1/3 \end{bmatrix}$$
$$: \begin{bmatrix} \frac{8}{7} & \frac{2}{7} & \frac{2}{7} \\ -\frac{2}{7} & \frac{5}{7} & \frac{4}{7} \\ \frac{2}{7} & \frac{5}{7} & \frac{4}{7} \\ \frac{1}{7} & \frac{4}{7} & \frac{5}{7} \end{bmatrix}$$
Nde $(UU^{T})^{T} : (U^{T})^{T} : UU^{T}$

October 25, 2017 9 / 39

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Example

$$W = \text{Span} \left\{ \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} -2\\2\\1 \end{bmatrix} \right\} \text{ and } \mathbf{y} = \begin{bmatrix} 0\\0\\9 \end{bmatrix}$$

Use the matrix formulation to find $proj_W y$.

$$\hat{\mathcal{G}}: \bigcup_{i=1}^{T} \mathcal{G}_{i}^{i} = \begin{pmatrix} \frac{\vartheta}{r} & \frac{1}{r_{i}} & \frac{1}{r_{i}} \\ \frac{\vartheta}{r_{i}} & \frac{\varsigma}{r_{i}} & \frac{1}{r_{i}} \\ \frac{\vartheta}{r_{i}} & \frac{\varsigma}{r_{i}} & \frac{1}{r_{i}} \\ \frac{\vartheta}{r_{i}} & \frac{\varsigma}{r_{i}} & \frac{\varsigma}{r_{i}} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 5 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

October 25, 2017 10 / 39

2

イロト イヨト イヨト イヨト

Best Approximation Theorem

Suppose *W* is a subspace of \mathbb{R}^n and **y** is a vector in \mathbb{R}^n . If $\hat{\mathbf{y}}$ is the orthogonal projection of **y** onto *W*, then $\hat{\mathbf{y}}$ is the *closest* point in *W* to **y**. That is

$$\|\mathbf{y} - \hat{\mathbf{y}}\| \le \|\mathbf{y} - \mathbf{v}\|$$

for every point **v** in *W*, and equality occurs if and only if $\mathbf{v} = \hat{\mathbf{y}}$.

< ロ > < 同 > < 回 > < 回 >

Approximate Solution to Inconsisitent System

Suppose we wish to solve a system $A\mathbf{x} = \mathbf{b}$ but it is inconsistent. Note that this means

b is not in ColA.

We seek an approximate solution $\hat{\boldsymbol{x}}$ by considering instead a system

$$A\hat{\mathbf{x}} = \hat{\mathbf{b}}.$$

To be consistent, we insist that $\hat{\mathbf{b}}$ is in ColA.

Question: Of all possible vectors in ColA, how should we choose $\hat{\mathbf{b}}$?

A D > A D > A D > A D > D < D</p>

October 25, 2017

13/39

Using the Orthogonal Projection

The best approximation $\hat{\mathbf{b}}$ to \mathbf{b} in ColA is the orthogonal projection of \mathbf{b} onto ColA!

Recall: The orthogonal complement to the column space of *A* is the null space of A^{T} . That is

 $[ColA]^{\perp} = NulA^{T}.$

Least Squares Problem

Suppose we wish to best approximate a solution to

 $A\mathbf{x} = \mathbf{b}.$

Let $\mathbf{b} = \hat{\mathbf{b}} + \mathbf{z}$

where $\hat{\mathbf{b}}$ is in ColA and \mathbf{z} is orthogonal to ColA.

October 25, 2017 15 / 39

Show that the system $A^T A \mathbf{x} = A^T \mathbf{b}$ is consistent.

Note
$$A\vec{x}$$
 is never \vec{b} .
Letting $\vec{b} = \hat{b} + \vec{z}$ when $\hat{b} = proj_{GRA}$
ond \vec{z} is in $[colA]^{\perp}$
 $A^{T}\vec{b} = A^{T}(\hat{b} + \vec{z}) = A^{T}\hat{b} + A^{T}\hat{z}$
 $= A^{T}\hat{b} + \vec{0}$
 $= A^{T}\hat{b}$

October 25, 2017 16 / 39

イロト イポト イヨト イヨト

ATA x = A 6 50 There is a solution to AX = 6 1 So there is some I such that Ax=6. The system is the consistent system ATAX = Ab ATAX=ATÊ ⇒ ATE=ATÊ for X=X an identity.

October 25, 2017 17 / 39

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙

Least Squares Problem

The system $A^T A \mathbf{x} = A^T \mathbf{b}$ is called the **normal equations** for the system $A \mathbf{x} = \mathbf{b}$.

Theorem: If the columns of *A* are linearly independent, then there is a unique least squares solution $\hat{\mathbf{x}}$ to the equation $A\mathbf{x} = \mathbf{b}$ that minimizes the error in the sense that

$$\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$$

October 25, 2017

18/39

for all **x** in \mathbb{R}^n .

Example: Best Fit Line

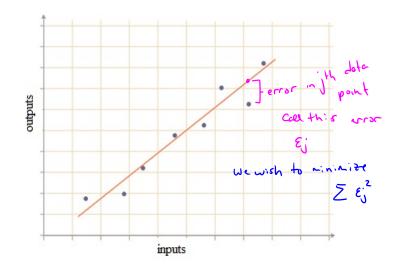


Figure: Given a set of data, we wish to determine the line y = mx + b of best fit. October 25, 2017 19/39

Example

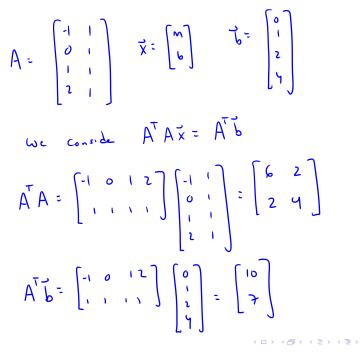
Find the line of best fit to the data set

$$\{(-1,0), (0,1), (1,2), (2,4)\}.$$
We want a line $y = m \times tb$. For these
points to be on the line
 $-1 m + b = 0$
 $0 m + b = 1$
 $1 m + b = 2$
 $2 m + b = 4$
 $\begin{bmatrix} -1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 4 \end{bmatrix}$

October 25, 2017 20 / 39

2

イロト イヨト イヨト イヨト



< ■ > < ■ > = > ○ Q (October 25, 2017 21 / 39

$$\begin{bmatrix} 6 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} 10 \\ 2 \end{bmatrix}$$

$$det(A^{T}A) = 24 - 4 = 20$$

$$(A^{T}A)^{-1} = \frac{1}{20} \begin{bmatrix} 4 - 2 \\ -2 & 6 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 2 - 1 \\ -1 & 3 \end{bmatrix}$$

$$\begin{bmatrix} M \\ b \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 2 - 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 10 \\ 2 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 13 \\ 11 \end{bmatrix}$$

$$M = \frac{13}{10}, \quad b = \frac{11}{10}$$

October 25, 2017 22 / 39

・ロト・西ト・ヨト・ヨー うへの

The line of best fit is

$$y = \frac{13}{10} \times \frac{11}{10}$$

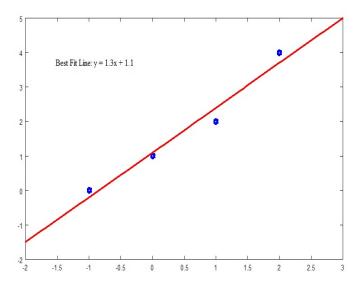


Figure: Our data set along with the least squares, best fit line.

• • • • • • • • • • • • • •

Section 6.4: Gram-Schmidt Orthogonalization

Question: Given any-old basis for a subspace W of \mathbb{R}^n , can we construct an orthogonal basis for that same space?

Example: Let
$$W = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2\} = \text{Span}\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\-1 \end{bmatrix} \right\}$$
. Find an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ that spans W .

We need
$$\vec{V}_1, \vec{V}_1$$
 to be in U, hence linear combinations
of $\vec{X}_1, \ n \neq \ \vec{X}_2$.
We can start with $\vec{V}_1 = \vec{X}_1$. Let
 $\vec{V}_2 = C_1 \vec{X}_1 + C_2 \vec{X}_2$.

October 25, 2017

25/39

$$C_{2} \text{ (ait be serve to linear independence. So}$$
Let's take $C_{2} = 1$.
 $\vec{V}_{1} = \vec{X}_{2} + C_{1}\vec{X}_{1}$. We require $\vec{V}_{1} \cdot \vec{V}_{2} = 0$
 $\vec{V}_{1} \cdot \vec{V}_{2} = \vec{V}_{1} \cdot (\vec{X}_{2} + C_{1}\vec{X}_{1}) = 0$
 $= \vec{V}_{1} \cdot \vec{X}_{2} + C_{1}\vec{V}_{1} \cdot \vec{X}_{1} = 0$ Using $\vec{V}_{1} = \vec{X}_{1}$
 $0 = \vec{V}_{1} \cdot \vec{X}_{2} + C_{1}\vec{V}_{1} \cdot \vec{V}_{1}$
 $0 = \vec{V}_{1} \cdot \vec{X}_{2} + C_{1}\vec{V}_{1} \cdot \vec{V}_{1}$
 $= C_{1} = -\frac{\vec{V}_{1} \cdot \vec{X}_{2}}{\|\vec{V}_{1}\|^{2}}$

October 25, 2017 26 / 39

So it should be that $\vec{V}_{2} = \vec{X}_{2} - \frac{\vec{V}_{1} \cdot \vec{X}_{2}}{\|V_{1}\|^{2}} \vec{V}_{1}$ We hold $\vec{X}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\vec{X}_2 = \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix}$ $\vec{v}_1 \cdot \vec{x}_1 = -2$, $\|\vec{v}_1\|^2 = |+|+| = 3$ $\vec{V}_{1} = \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix} + \frac{2}{5} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2/3 \\ -1/3 \\ -1/3 \end{bmatrix}$

October 25, 2017 27 / 39

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

The new, Grithogonal basis is
$$\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2/3\\-1/3\\-1/3\\-1/3 \end{bmatrix} \right\}$$

Theorem: Gram Schmidt Process

Let $\{\mathbf{x}_1, \ldots, \mathbf{x}_p\}$ be any basis for the nonzero subspace W of \mathbb{R}^n . Define the set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ via

$$\mathbf{v}_{1} = \mathbf{x}_{1}$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \left(\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} - \left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2}$$

$$\vdots$$

$$\mathbf{v}_{p} = \mathbf{x}_{p} - \sum_{j=1}^{p-1} \left(\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{j}}{\mathbf{v}_{j} \cdot \mathbf{v}_{j}} \right) \mathbf{v}_{j}.$$

Then $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is an orthogonal basis for *W*. Moreover, for each $k = 1, \dots, p$

$$\operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_k\} = \operatorname{Span}\{\mathbf{x}_1,\ldots,\mathbf{x}_k\}.$$