October 26 Math 3260 sec. 58 Fall 2017

Section 6.3: Orthogonal Projections

Equating points with position vectors, we may wish to find the point y in
a subspace W of R" that is closestto a given point y.
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Figure: lllustration of an orthogonal projection. Note that dist(y, ¥) is the
shortest distance between y and the points on W.
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Orthogonal Decomposition Theorem
Let W be a subspace of R". Each vector y in R” can be written
uniquely as a sum

y=y-+z
where yisin W and zis in W+,

If {uq,...,up} is any orthogonal basis for W, then

p
a y-u . DN
V—Z(uj'uj) u, and z=y-y.

=1

Remark: Note that the basis must be orthogonal, but otherwise the
vector y is independent of the particular basis used!

Remark: The vector y is called the orthogonal projection of y onto
W. We can denote it

projy -
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Example
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(a) Verify that the spanning vectors for W given are an orthogonal
basis for W.

-

Ny 26DV ()20 = -4t S\

<\

: 2 3 \
5o Ay aw orfhogenst. Smu UFCV hroa
enS;‘\-,JU Scolers C, 4ty a~ BN indapeidect

-

H'V‘(& v, l\’:k 11 o~ a:—\\. 0&0"\‘,,2 L)ﬂ(‘s .

October 25, 2017 3/40



Example Continued...
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(b) Find the orthogonal projection of y onto W.
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(c) Find the shortest distance between y and the subspace W.
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Computing Orthogonal Projections

Theorem: If {uy,...,up} is an orthonormal basis of a subspace W of
R", and y is any vector in R" then

p
proj y = _ (y-uj) u;.
j=1

And, if Uis the matrix U =[uy --- up], then the above is equivalent
to
proj,y y = UUTy.

Remark: In general, U is not square; it's n x p. So even though UUT
will be a square matrix, it is not the same matrix as U U and it is not
the identity matrix.
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Example
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Find an orthonormal basis {uq,u2} for W. Then compute the matrices
UTU and UUT where U = [u; uy].

A = (19,0 =3
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Example
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Use the matrix formulation to find proj, y.
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Best Approximation Theorem

Suppose W is a subspace of R and y is a vector in R". If y is the
orthogonal projection of y onto W, then y is the closest pointin W to y.
That is

ly =yl <ly—vl
for every point v in W, and equality occurs if and only if v =y.
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Approximate Solution to Inconsisitent System

Suppose we wish to solve a system Ax = b but it is inconsistent. Note
that this means

b isnotin ColA.

We seek an approximate solution X by considering instead a system

A~

AX =b.

To be consistent, we insist that b is in ColA.

Question: Of all possible vectors in ColA, how should we choose b?
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Using the Orthogonal Projection

The best approximation b to b in ColA is the orthogonal projection of b
onto ColAl!

Recall: The orthogonal complement to the column space of A is the
null space of A”. That is

[ColA]* = NulAT.
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Least Squares Problem

Suppose we wish to best approximate a solution to

Ax = b.

let b=b+z

where b is in ColA and z is orthogonal to ColA.
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Show that the system A" Ax = A'b is consistent.
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Least Squares Problem

The system AT Ax = ATb is called the normal equations for the
system Ax = b.

Theorem: If the columns of A are linearly independent, then there is a

unique least squares solution X to the equation Ax = b that minimizes
the error in the sense that

lb — AX|| < [|b — Ax||

for all x in R".
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Example: Best Fit Line
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Figure: Given a set of data, we wish to determine the line y = mx + b of best
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Example
Find the line of best fit to the data set
{(=1,0),(0,1),(1,2),(2,4)} .
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Best Fit Line:v=13x+ 1.1
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Figure: Our data set along with the least squares, best fit line.
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Section 6.4: Gram-Schmidt Orthogonalization

Question: Given any-old basis for a subspace W of R”, can we
construct an orthogonal basis for that same space?
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orthogonal basis {vy, vz} that spans W.
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Theorem: Gram Schmidt Process

Let {x1,...,Xp} be any basis for the nonzero subspace W of R".
Define the set of vectors {v4,...,Vp} via
Vi = X4
X2 -Vy
Vo = Xo-—
2 2 <v1 v1> 1
X3V X3V
Vo = xg— (X3Vi)y, _ (X V2],
Vi V4 Vo - Vo
p—1
Xp - V|
p Vi
Vo = Xp— ;.
g P2 (V/ : V/) !
J=1
Then {vy,...,Vp} is an orthogonal basis for W. Moreover, for each
k=1,...,p

Span{vy,..., vk} = Span{xy,...,Xx}.

October 25, 2017

32/40



