October 28 Math 2306 sec 54 Fall 2015

Section 7.2: Inverse Transforms and Derivatives

Now we wish to go backwards: Given F(s) can we find a function f(f)
such that Z{f(t)} = F(s)?

If so, we’ll use the following notation

LTHF(9)} =H1) = Z{H(t)} = F(s).

We’'ll call f(t) the inverse Laplace transform of F(s).
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A Table of Inverse Laplace Transforms
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The inverse Laplace transform is also linear so that

2~ {aF(s) + BG(s)} = af(t) + Bg(1)
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Find the Inverse Laplace Transform
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Transforms of Derivatives
Suppose f has a Laplace transform' and that f is differentiable on
[0, o). Obtain an expression for the Laplace tranform of f/(t).
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'e.g. f is of exponential order ¢ and assuming s > c.
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Transforms of Derivatives
From . {f'(t)} = sF(s) — f(0), find
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Transforms of Derivatives

For y = y(t) defined on [0, c0) having derivatives y’, y” and so forth, if

Z{y(t)} = Y(s),

then 4
7 {d{} — s¥(s) — y(0),

&z { d”y} =5"Y(s) =" y(0) = s"2y/(0) — - - — y""(0).
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Differential Equation
For constants a, b, and c, take the Laplace transform of both sides of
the equation
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Solving IVPs

Apply Laplace

Transform

/ Solution
y(t)
(obtained unknown
from ¥(s)) ¥(s) /
/Solution
Y(s)
Take Inverse Laplace (obtained
Transform

by
algebra)

Figure: We use the Laplace transform to turn our DE into an algebraic

equation. Solve this transformed equation, and then trans;orm back.
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General Form

We get

v~ Q) G ey B

~ P(s) * P(s)

where Q is a polynomial with coefficients determined by the initial
conditions, G is the Laplace transform of g(t) and P is the
characteristic polynomial of the original equation.

z1 { ggzg } is called the zero input response,

7 { ggzi } is called the zero state response.
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Solve the IVP using the Laplace Transform
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