## October 29 Math 2306 sec. 53 Fall 2018

## Section 15: Shift Theorems

Theorem: (translation in s) Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

For example,

$$
\begin{gathered}
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \Longrightarrow \mathscr{L}\left\{e^{a t} t^{n}\right\}=\frac{n!}{(s-a)^{n+1}} . \\
\mathscr{L}\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}} \Longrightarrow \mathscr{L}\left\{e^{a t} \cos (k t)\right\}=\frac{s-a}{(s-a)^{2}+k^{2}} .
\end{gathered}
$$

Evaluate the Laplace Transform
(a)

$$
\begin{array}{rl}
\mathscr{L}\left\{e^{-2 t} \cos (\pi t)\right\}_{a=-2} & \mathscr{L}\{\cos (k t)\}=\frac{\delta}{s^{2}+k^{2}} \\
& =\frac{s-(-2)}{(s-(-2))^{2}+\pi^{2}}=\frac{s+2}{(s+2)^{2}+\pi^{2}}
\end{array}
$$

Evaluate the Inverse Laplace Transform
(b) $\quad \mathscr{L}^{-1}\left\{\frac{1}{(s+6)^{4}}\right\}$

Consider $\mathscr{L}^{-1}\left\{\frac{1}{S^{4}}\right\}$
Looks lie

$$
\begin{aligned}
& =e^{-6 t}\left(\frac{1}{3!} t^{3}\right) \\
& =\frac{1}{6} t^{3} e^{-6 t}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{n!}{s^{n+1}} \text { for } n=3 \\
& \mathcal{L}^{-1}\left\{\frac{1}{s^{4}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{3!} \frac{3!}{s^{4}}\right\} \\
&=\frac{1}{3!} \mathscr{L}^{-1}\left\{\frac{3!}{s^{4}}\right\}=\frac{1}{3!} t^{3}
\end{aligned}
$$

## The Unit Step Function

Let $a \geq 0$. The unit step function $\mathscr{U}(t-a)$ is defined by


Figure: We can use the unit step function to provide convenient expressions for piecewise defined functions.

Piecewise Defined Functions
Verify that

$$
\begin{aligned}
f(t)= \begin{cases}g(t), & 0 \leq t<a \\
h(t), & t \geq a\end{cases} \\
\text { Recall } u(t-a)=\left\{\begin{array}{l}
0, \quad 0 \leq t<a \\
1, \quad t \geq a
\end{array}\right.
\end{aligned}
$$

If $0 \leq t<a$, then $U(t-a)=0$. Thin

$$
\begin{aligned}
g(t)-g(t) u(t-a)+h(t) u(t-a) & =g(t)-g(t) \cdot 0+h(t) \cdot 0 \\
& =g(t)
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } \quad t \geqslant a, \quad u(t-a)=1 \\
& \begin{aligned}
g(t)-g(t) u(t-a)+h(t) u(t-a) & =g(t)-g(t) \cdot \underline{1}+h(t) \cdot 1 \\
& =g(t)-g(t)+h(t) \\
& =h(t)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { So } \\
& g(t)-g(t) u(t-a)+h(t) u(t-a)=\left\{\begin{array}{l}
g(t), 0 \leq t<a \\
h(t), t \geqslant a
\end{array}\right.
\end{aligned}
$$

Piecewise Defined Functions in Terms of $\mathscr{U}$
Write $f$ on one line in terms of $\mathscr{U}$ as needed

$$
u(t-2)=\left\{\begin{array}{l}
0,0 \leq t<2 \\
1, \quad t \geq 2
\end{array}\right.
$$

Let's verity that this is correct.
For $0 \leq t<2, u(t-2)=0$ ad $u(t-s)=0$

$$
f(t)=e^{t}-e^{t} \cdot 0+t^{2} \cdot 0-t^{2} \cdot 0+2 t \cdot 0=e^{t}
$$

$$
\begin{aligned}
& f(t)= \begin{cases}e^{t}, & 0 \leq t<2 \\
t^{2}, & 2 \leq t<5 \\
2 t & t \geq 5\end{cases} \\
& u(t-s)= \begin{cases}0, & 0 \leq t<s \\
1, & t \geqslant 5\end{cases}
\end{aligned}
$$

For $\quad 2 \leqslant t<s \quad u(t-2)=1$ ad $u(t-s)=0$

$$
f(t)=e^{t}-e^{t} \cdot 1+t^{2} \cdot 1-t^{2} \cdot 0+2 t \cdot 0=t^{2}
$$

For $t \geqslant 5, \quad u(t-2)=1$ and $u(t-5)=1$

$$
f(t)=e^{t}-e^{t} \cdot 1+t^{2} \cdot 1-t^{2} \cdot 1+2 t \cdot 1=2 t
$$

## Translation in $t$

Given a function $f(t)$ for $t \geq 0$, and a number $a>0$

$$
f(t-a) \mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ f(t-a), & t \geq a\end{cases}
$$




Figure: The function $f(t-a) \mathscr{U}(t-a)$ has the graph of $f$ shifted $a$ units to the right with value of zero for $t$ to the left of $a$.

## Theorem (translation in $t$ )

If $F(s)=\mathscr{L}\{f(t)\}$ and $a>0$, then

$$
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s) .
$$

In particular,

$$
\begin{gathered}
\mathscr{L}\{\mathscr{U}(t-a)\}=\frac{e^{-a s}}{s} . \\
\text { Noth this is } e^{-a s} \cdot \mathscr{L}\{1\}
\end{gathered}
$$

As another example,

$$
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \quad \Longrightarrow \quad \mathscr{L}\left\{(t-a)^{n} \mathscr{U}(t-a)\right\}=\frac{n!e^{-a s}}{s^{n+1}} .
$$

Find $\mathscr{L}\{\mathscr{U}(t-a)\}$

$$
\begin{aligned}
\mathcal{Z}\{u(t-a)\} & =\int_{0}^{\infty} e^{-s t} u(t-a) d t \\
& =\int_{0}^{a} e^{-s t} \cdot 0 d t+\int_{a}^{\infty} e^{-s t} \cdot 1 d t \\
& =\left.\frac{-1}{s} e^{-s t}\right|_{a} ^{\infty} \text { for } s>0 \\
& =\frac{-1}{s}\left(0-e^{-s \cdot a}\right)=\frac{1}{s} e^{-a s}
\end{aligned}
$$

$$
u(t-a)=\left\{\begin{array}{l}
0,0 \leq t<a \\
1, t \geqslant a
\end{array}\right.
$$

Example
Find the Laplace transform $\mathscr{L}\{f(t)\}$ where

$$
f(t)= \begin{cases}1, & 0 \leq t<1 \\ t, & t \geq 1\end{cases}
$$

(a) First write $f$ in terms of unit step functions.

$$
\begin{aligned}
f(t) & =1-1 u(t-1)+t u(t-1) \\
& =1+u(t-1)(-1+t) \\
& =1+(t-1) u(t-1)
\end{aligned}
$$

Example Continued...
(b) Now use the fact that $f(t)=1+(t-1) \mathscr{U}(t-1)$ to find $\mathscr{L}\{f\}$.

* If $g(t)=t$, then $g(t-1)=t-1$ and $\mathscr{L}\{t\}=\frac{1}{s^{2}}$

$$
\begin{aligned}
\mathscr{L}\{f(t)\} & =\mathscr{L}\{1+(t-1) u(t-1)\} \quad{ }_{k}{ }_{q} 00 \mathrm{~V} \lim _{q}\left(k^{-1} u(t-1)\right. \\
& =\mathcal{L}\{1\}+\mathcal{L}\{(t-1) u(t-1)\} \\
& =\frac{1}{s}+\frac{1}{s^{2}} \cdot e^{-1 s}=\frac{1}{s}+\frac{e^{-s}}{\delta^{2}}
\end{aligned}
$$

