October 2 Math 2306 sec 54 Fall 2015

Section 4.4: Method of Undetermined Coefficients

Using superposition as needed, begin with assumption:

$$
y_{p}=y_{p_{1}}+\cdots+y_{p_{k}}
$$

where $y_{p_{i}}$ has the same general form as $g_{i}(x)$.
Case I: y_{p} as first written has no part that duplicates the complementary solution y_{c}. Then this first form will suffice.

Case II: y_{p} has a term $y_{p_{i}}$ that duplicates a term in the complementary solution y_{c}. Multiply that term by x^{n}, where n is the smallest positive integer that eliminates the duplication.

Case II Examples
Solve the ODE

$$
y^{\prime \prime}-2 y^{\prime}+y=-4 e^{x}
$$

Find y_{c} : solve $y^{\prime \prime}-2 y^{\prime}+y=0$

$$
\begin{gathered}
m^{2}-2 m+1=0 \Rightarrow(m-1)^{2}=0 \Rightarrow m=1 \text { repeated } \\
y_{1}=e^{x}, y_{2}=x e^{x}
\end{gathered}
$$

so $y_{c}=c_{1} e^{x}+c_{2} x e^{x}$

Find y_{p} : $g(x)=-4 e^{x}$

$$
\begin{aligned}
& y_{p}=\left(A e^{x}\right) x^{2}=\left(A x e^{x}\right) x=A x^{2} e^{x} \\
& \begin{array}{ccc}
\text { M } & \text { sot is } & \text { This not part } \\
\text { party } & \text { this } & \text { is not } y c
\end{array} \\
& y_{p}=A x^{2} e^{x}, y_{p}^{\prime}=2 A x e^{x}+A x^{2} e^{x}, y_{p}^{\prime \prime}=2 A e^{x}+2 A x e^{x}+2 A x e^{x}+A x^{2} e^{x} \\
& y_{p}{ }^{\prime \prime}-2 y_{p}{ }^{\prime}+y_{p}=-4 e^{x} \\
& 2 A e^{x}+4 A x e^{x}+A x^{2} e^{x}-2\left(2 A x e^{x}+A x^{2} e^{x}\right)+A x^{2} e^{x}=-4 e^{x}
\end{aligned}
$$

$$
\begin{aligned}
(A-2 A+A) x^{2} e^{x}+(4 A-4 A) x e^{x}+2 A e^{x} & =-4 e^{x} \\
2 A e^{x} & =-4 e^{x} \\
A & =-2
\end{aligned}
$$

So $y_{p}=-2 x^{2} e^{x}$

The genend solution is

$$
y=c_{1} e^{x}+c_{2} x e^{x}-2 x^{2} e^{x} .
$$

Find the form of the particular solution

$$
\begin{aligned}
& y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=\cos x+x^{4} \\
& m^{3}-m^{2}+m-1=0 \quad \text { Find } y_{c} \\
& m^{2}(m-1)+1(m-1)=0 \\
& (m-1)\left(m^{2}+1\right)=0 \Rightarrow \begin{aligned}
& m-1=0 \text { or } \quad m^{2}+1=0 \\
& m=1 \text { or } \quad m= \pm i \\
&=0 \pm 1 i \\
& y_{1}=e^{x} \quad \alpha=0, \beta=1 \\
& y_{2}=\cos x \quad y_{c}=c_{1} e^{x}+c_{2} \cos x+c_{3} \sin x \\
& y_{3}=\sin x
\end{aligned}
\end{aligned}
$$

Let $g_{1}(x)=\cos x$

$$
g_{2}(x)=x^{4}
$$

$$
\nu^{\text {part of } y c}
$$

$$
\begin{aligned}
y_{p_{1}} & =(A \cos x+B \sin x) x \\
& =A_{x} \cos x+B x \sin x
\end{aligned}
$$

$$
y_{p 2}=C x^{4}+D x^{3}+E x^{2}+F x+G
$$

this works
th's works

$$
y_{p}=A x \operatorname{Cos} x+B_{x} \operatorname{Sin} x+C x^{4}+D x^{3}+E x^{2}+F x+G
$$

