October 30 Math 2306 sec 51 Fall 2015

Section 7.3: Translation Theorems

Theorem (translation in s) Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=\int_{0}^{\infty} e_{\Lambda}^{-e^{-s t}} f(t) d t=\int_{0}^{\infty} e^{-(s-a) t} f(t) d t=\left.\mathscr{L}\{f(t)\}\right|_{s-a}
$$

For example,

$$
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \Longrightarrow \mathscr{L}\left\{e^{a t} t^{n}\right\}=\frac{n!}{(s-a)^{n+1}} .
$$

Evaluate the Laplace Transform
(a) $\mathscr{L}\left\{e^{-3 t} t^{4}\right\}=\frac{4!}{(s-(-3))^{5}}$

$$
\mathcal{L}\left\{t^{4}\right\}=\frac{4!}{s^{5}}
$$

$$
=\frac{4!}{(s+3)^{5}}
$$

(b) $\mathscr{L}\left\{e^{2 t} \sin (\pi t)\right\}$

$$
\mathscr{L}\{\sin (\pi t)\}=\frac{\pi}{s^{2}+\pi^{2}}
$$

$$
=\frac{\pi}{(s-2)^{2}+\pi^{2}}
$$

Inverse Laplace Transforms (completing the square)
(a) $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\}$ $s^{2}+2 s+2$ is irreducible Complete the square

$$
\begin{array}{ll}
=\mathcal{L}^{-1}\left\{\frac{s}{(s+1)^{2}+1}\right\} & s^{2}+2 s+2= \\
=\mathcal{L}^{-1}\left\{\frac{s+1-1}{(s+1)^{2}+1}\right\} & \\
=\mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+1}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}+1}\right\} & s=s+1-1 \\
=e^{-t} \cos t-e^{-t} \sin t
\end{array}
$$

$$
s^{2}+2 s+2=s^{2}+2 s+1+1
$$

$$
=(s+1)^{2}+1
$$

Using: $\mathscr{L}\{\cos t\}=\frac{s}{s^{2}+1}$

$$
\mathcal{L}\{\sin t\}=\frac{1}{s^{2}+1}
$$

Inverse Laplace Transforms (repeat linear factors)
(b) $\mathscr{L}^{-1}\left\{\frac{1+3 s-s^{2}}{s(s-1)^{2}}\right\} \quad$ Do a particl fraction de comp

$$
\begin{aligned}
& \frac{1+3 s-s^{2}}{s(s-1)^{2}}=\frac{A}{s}+\frac{B}{s-1}+\frac{C}{(s-1)^{2}} \quad \begin{array}{l}
\text { Mut by } \\
s(s-1)^{2}
\end{array} \\
& 1+3 s-s^{2}=A(s-1)^{2}+B s(s-1)+C s \\
&=A\left(s^{2}-2 s+1\right)+B\left(s^{2}-s\right)+C s \\
& 1+3 s-s^{2}=(A+B) s^{2}+(-2 A-B+C) s+A \\
&===
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\left.\begin{array}{rl}
A+B & =-1 \\
-2 A-B+C & =3
\end{array}\right\} \Rightarrow A=1, B=-1-A=-2 \\
A & =1
\end{array}\right\} \begin{aligned}
C & =3+B+2 A=3-2+2=3 \\
\mathcal{L}^{-1}\left\{\frac{1+3 s-s^{2}}{s(s-1)^{2}}\right\} & =\mathcal{L}^{-1}\left\{\frac{1}{s}-\frac{2}{s-1}+\frac{3}{(s-1)^{2}}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-2 \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}+3 \mathcal{L}^{-1}\left\{\frac{1}{(s-1)^{2}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =1-2 e^{t}+3 t e^{t} \\
& \\
& \qquad \sin u \quad y\{t\}=\frac{1}{s^{2}}
\end{aligned}
$$

Solve the IVP using the Laplace Transform

$$
\begin{aligned}
& y^{\prime \prime}+4 y^{\prime}+4 y=t e^{-2 t} \quad y(0)=1, y^{\prime}(0)=0 \quad \text { Let } \mathcal{L}\{y\}=Y \\
& \mathcal{L}\left\{y^{\prime \prime}+4 y^{\prime}+4 y\right\}=\mathcal{L}\left\{t e^{-2 t}\right\} \\
& \mathcal{L}\left\{y^{\prime \prime}\right\}+4 \mathcal{L}\left\{y^{\prime}\right\}+4 \mathcal{L}\{y\}=\mathcal{L}\left\{t e^{-2 t}\right\} \\
& s^{2} Y(s)-5 y(0)-y^{\prime}(0)+4(s Y(s)-y(0))+4 Y(s)=\frac{1}{(s-(-2))^{2}} \\
& \left(s^{2}+4 s+4\right) Y(s)-5 \cdot 1-0-4=\frac{1}{(s+2)^{2}} \\
& (s+2)^{2} Y(s)=\frac{1}{(s+2)^{2}}+s+4
\end{aligned}
$$

$$
\begin{aligned}
Y(s) & =\frac{1}{(s+2)^{4}}+\frac{s+4}{(s+2)^{2}} \\
& =\frac{1}{(s+2)^{4}}+\frac{s+2}{(s+2)^{2}}+\frac{2}{(s+2)^{2}} \\
& =\frac{1}{(s+2)^{4}}+\frac{1}{s+2}+\frac{2}{(s+2)^{2}} \\
y(t) & =\mathcal{L}^{-1}\{Y(s)\}=\mathcal{L}^{-1}\left\{\frac{1}{(s+2)^{4}}+\frac{1}{s+2}+\frac{2}{(s+2)^{2}}\right\} \\
& =\mathcal{L}^{-1}\left\{\frac{1}{(s+2)^{4}}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\}+2 \mathcal{L}^{-1}\left\{\frac{1}{(s+2)^{2}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathcal{L}^{-1}\left\{\frac{1}{3!} \frac{3!}{(s+2)^{4}}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\}+2 \mathcal{L}^{-1}\left\{\frac{1}{(s+2)^{2}}\right\} \\
& =\frac{1}{6} \mathcal{L}^{-1}\left\{\frac{3!}{(s+2)^{4}}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\}+2 \mathcal{L}^{-1}\left\{\frac{1}{(s+2)^{2}}\right\} \\
y & =\frac{1}{6} t^{3} e^{-2 t}+e^{-2 t}+2 t e^{-2 t}
\end{aligned}
$$

