October 30 Math 2306 sec 54 Fall 2015

Section 7.2: Inverse Transforms and Derivatives

- $\mathscr{L}\{\alpha f(t)+\beta g(t)\}=\alpha F(s)+\beta G(s)$
- $\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0$
- $\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0$ for $n=1,2, \ldots$
- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a$
- $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}, \quad s>0$
- $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}, \quad s>0$

Transforms of Derivatives

For $y=y(t)$ defined on $[0, \infty)$ having derivatives $y^{\prime}, y^{\prime \prime}$ and so forth, if

$$
\mathscr{L}\{y(t)\}=Y(s)
$$

then

$$
\begin{gathered}
\mathscr{L}\left\{\frac{d y}{d t}\right\}=s Y(s)-y(0) \\
\mathscr{L}\left\{\frac{d^{2} y}{d t^{2}}\right\}=s^{2} Y(s)-s y(0)-y^{\prime}(0) \\
\vdots \\
\mathscr{L}\left\{\frac{d^{n} y}{d t^{n}}\right\}=s^{n} Y(s)-s^{n-1} y(0)-s^{n-2} y^{\prime}(0)-\cdots-y^{(n-1)}(0)
\end{gathered}
$$

Solve the IVP using the Laplace Transform
(b)

$$
\begin{aligned}
& y^{\prime \prime}-4 y^{\prime}=6 e^{3 t}-3 e^{-t} \quad y(0)=1, \quad y^{\prime}(0)=-1 \quad \text { Let } \mathcal{L}\{y\}=Y(s) \\
& \mathscr{L}\left\{y^{\prime \prime}-4 y^{\prime}\right\}=\mathcal{L}\left\{6 e^{3 t}-3 e^{-t}\right\} \\
& \mathcal{L}\left\{y^{\prime \prime}\right\}-4 \mathcal{L}\left\{y^{\prime}\right\}=6 \mathcal{L}\left\{e^{3 t}\right\}-3 \mathcal{L}\left\{e^{-t}\right\} \\
& s^{2} Y(s)-5 y(0)-y^{\prime}(0)-4(s Y(s)-y(0))=\frac{6}{s-3}-\frac{3}{s-(-1)} \\
& \left(s^{2}-4 s\right) Y(s)-s+1+4=\frac{6}{s-3}-\frac{3}{s+1}
\end{aligned}
$$

$$
Y(s)=\frac{6}{(s-3)\left(s^{2}-4 s\right)}-\frac{3}{(s+1)\left(s^{2}-4 s\right)}+\frac{s-5}{s^{2}-4 s}
$$

Partial fraction De comps:
Multi. by

$$
\begin{aligned}
\frac{6}{(s-3) s(s-4)} & =\frac{A}{s-3}+\frac{B}{s}+\frac{C}{s-4} \\
6 & =A s(s-4)+B(s-3)(s-4)+C s(s-3) \\
\text { set } s & =3 \quad 6=-3 A \Rightarrow A=-2 \\
s & =0 \quad 6=12 B \Rightarrow B=\frac{1}{2} \\
s & =4 \quad 6=4 C \Rightarrow C=\frac{3}{2}
\end{aligned}
$$

$$
(s-3) s(s-4)
$$

$$
\left.\begin{array}{rl}
\frac{-3}{(s+1) s(s-4)} & =\frac{A}{s+1}+\frac{B}{s}+\frac{C}{s-4} \quad \begin{array}{rl}
\text { mult. } \\
(s+1) s(s-4)
\end{array} \\
-3 & =A s(s-4)+B(s+1)(s-4)+C s(s+1) \\
\text { set } s & =-1 \quad-3
\end{array}\right)=5 A \Rightarrow A=\frac{-3}{5}, ~-3=-4 B \Rightarrow B=3 / 4 .
$$

$$
\begin{gathered}
\frac{s-5}{s(s-4)}=\frac{A}{s}+\frac{B}{s-4} \quad \begin{array}{c}
\text { Mult. by } \\
s(s-4)
\end{array} \\
s-5=A(s-4)+B s \\
s=0 \quad-5=-4 A \Rightarrow A=\frac{5}{4} \\
s=4 \quad-1=4 B \Rightarrow B=\frac{-1}{4} \\
U(s)=\frac{-2}{s-3}+\frac{1 / 2}{s}+\frac{3 / 2}{s-4}+\frac{-3 / s}{s+1}+\frac{3 / 4}{s}+\frac{-3 / 20}{s-4}+\frac{s / 4}{s}-\frac{1 / 4}{s-4}
\end{gathered}
$$

$$
\begin{aligned}
Y(s) & =\frac{-2}{s-3}-\frac{3 / s}{s+1}+\frac{s / 2}{s}+\frac{11 / 0}{s-4} \\
y(t) & =\mathcal{L}^{-1}\{Y(s)\}=\mathcal{L}^{-1}\left\{\frac{-2}{s-3}-\frac{3 / s}{s+1}+\frac{s / 2}{s}+\frac{11 / 0}{s-4}\right\} \\
& =-2 \mathcal{L}^{-1}\left\{\frac{1}{s-3}\right\}-\frac{3}{5} \mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\}+\frac{5}{2} \mathcal{L}^{-1}\left\{\frac{1}{s}\right\}+\frac{11}{10} \mathcal{L}^{-1}\left\{\frac{1}{s-4}\right\} \\
y(t) & =-2 e^{3 t}-\frac{3}{5} e^{-t}+\frac{5}{2}+\frac{11}{10} e^{4 t}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \frac{d^{2} y}{d t^{2}}+9 y=e^{t} \quad y(0)=0, \quad y^{\prime}(0)=0 \\
& \mathcal{L}\left\{y^{\prime \prime}+q_{y}\right\}=\mathcal{L}\left\{e^{t}\right\} \quad \mathcal{L}\{y(t)\}=U(s) \\
& \mathcal{L}\left\{y^{\prime \prime}\right\}+q \mathcal{L}\{y\}=\mathcal{L}\left\{e^{t}\right\} \\
& s^{2} Y(s)-s y(0)-y^{\prime}(0)+q Y(s)=\frac{1}{s-1} \\
& \left(s^{2}+q\right) Y(s)=\frac{1}{s-1}
\end{aligned}
$$

$$
Y_{i}(s)=\frac{1}{(s-1)\left(s^{2}+9\right)}
$$

Paticl fraction decomp

$$
\begin{aligned}
\frac{1}{(s-1)\left(s^{2}+9\right)} & =\frac{A}{s-1}+\frac{B s+C}{s^{2}+9} \\
1 & =A\left(s^{2}+9\right)+(B s+C)(s-1) \\
& =A s^{2}+9 A+B s^{2}-B s+C s-C \\
0 s^{2}+O s+1 & =(A+B) s^{2}+(-B+C) s+9 A-C \\
= & =
\end{aligned}
$$

Mult by

$$
(s-1)\left(s^{2}+9\right)
$$

$$
\begin{aligned}
& A+B=0 \quad\} \Rightarrow A+C=0 \\
& -B+C=0 \quad 9 A-C=1 \\
& 9 A-C=1 \quad \Rightarrow A=\frac{1}{10} \\
& B=-A=\frac{-1}{10}, \quad C=B=\frac{-1}{10} \\
& Y(s)=\frac{\frac{1}{10}}{s-1}+\frac{\frac{-1}{10} s-\frac{1}{10}}{s^{2}+9}=\frac{\frac{1}{10}}{s-1}-\frac{1}{10}\left(\frac{s}{s^{2}+9}+\frac{1}{s^{2}+9}\right)
\end{aligned}
$$

$$
\begin{aligned}
Y(s) & =\frac{1}{10} \frac{1}{s-1}-\frac{1}{10} \frac{s}{s^{2}+9}-\frac{1}{30} \frac{3}{s^{2}+9} \\
y(t) & =\mathcal{L}^{-1}\{Y(s)\} \\
& =\frac{1}{10} \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}-\frac{1}{10} \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+9}\right\}-\frac{1}{30} \mathcal{L}^{-1}\left\{\frac{3}{s^{2}+9}\right\} \\
y(t) & =\frac{1}{10} e^{t}-\frac{1}{10} \cos 3 t-\frac{1}{30} \sin 3 t
\end{aligned}
$$

