October 31 MATH 1113 sec. 51 Fall 2018

Section 6.3: Angles, Rotations, and Angle Measures

Reference Angles Suppose we want to find the trig values for the angle θ shown. Note that the acute angle (pink) has terminal side through (x, y), and by symmetry the terminal side of θ passes through the point (-x, y) (same y and opposite sign x).

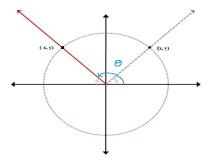
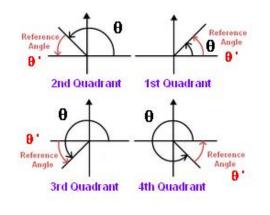


Figure: What is the connection between the trig values for θ and those for the acute angle in pink?

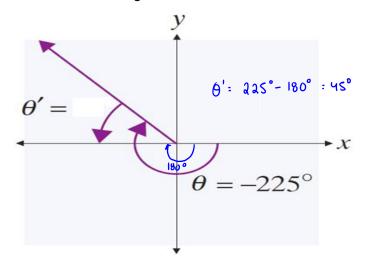
Reference Angles

Definition: Let θ be an angle in standard position. If θ is not a quadrantal angle, then the **reference angle** θ' associated with θ is the angle of measure $0^{\circ} < \theta' < 90^{\circ}$ between the terminal side of θ and the *nearest* part of the *x*-axis.



■ ● ● ● ● ○ へ ○
 October 25, 2018 2/32

Example (a) Determine the reference angle.



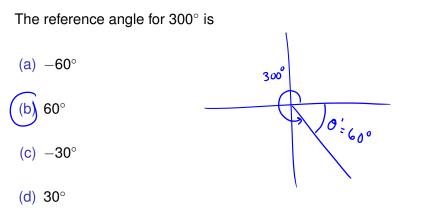
イロト イポト イヨト イヨト

Example (b) Determine the reference angle.



October 25, 2018 4 / 32

Question



э

Theorem on Reference Angles

Theorem: If θ' is the reference angle for the angle θ , then

$$\sin \theta' = |\sin \theta|, \quad \cos \theta' = |\cos \theta| \quad \& \quad \tan \theta' = |\tan \theta|.$$

Remark 1: The analogous relationships hold for the cosecant, secant, and cotangent.

Remark 2: This means that the trigonometric values for θ can differ at most by a sign (+ or -) from the values for θ' .

> October 25, 2018

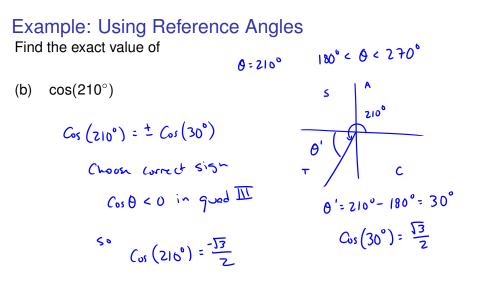
6/32

Example: Using Reference Angles Find the exact value of

(a)
$$\sin(135^{\circ})$$
 $G = 135^{\circ}$ $90^{\circ} < 0 < 180^{\circ}$
 $\sin(135^{\circ}) = \pm \sin(45^{\circ})$
 $(hoose creed sigh$
 $gued II = 5ine is$
 $\sin(45^{\circ}) = \frac{52}{2}$
 5° $\sin(135^{\circ}) = \frac{52}{2}$

October 25, 2018 7 / 32

<ロ> <四> <四> <四> <四> <四</p>



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Question

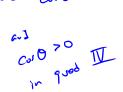
Suppose θ is an angle such that $270^{\circ} < \theta < 360^{\circ}$ and its reference angle θ' satisfies $\cos \theta' = \frac{2}{3}$.

The secant of
$$\theta$$
,

(a) $\sec \theta = \frac{3}{2}$, and I'm certain (b) $\sec \theta = \frac{3}{2}$, but I'm not certain

(c) $\sec \theta = -\frac{3}{2}$, and I'm certain

(d) $\sec \theta = -\frac{3}{2}$, but I'm not certain



イロト 不得 トイヨト イヨト 二日

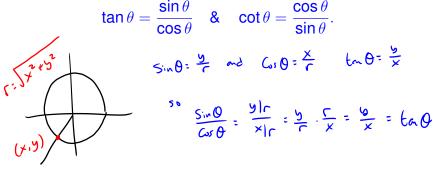
October 25, 2018

9/32

Sec O= Cur O

More New Trigonometric Identities

Quotient Identities: For any given θ for which both sides are defined



4 3 5 4 3

Example

Use the given information to determine the remaining trigonometric values of θ .

(a)
$$\sin \theta = \frac{1}{4}$$
 and $\cos \theta = -\frac{\sqrt{15}}{4}$
 $C_{sc}\theta = \frac{1}{\sin \theta} = \frac{4}{1} = 4$
 $S_{cc}\theta = \frac{1}{\cos \theta} = \frac{-4}{\sqrt{15}}$
 $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{1}{\sqrt{15}} = \frac{1}{\sqrt{15}}$
 $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{1}{\sqrt{15}} = \frac{1}{\sqrt{15}}$
 $\tan \theta = \frac{1}{\sqrt{15}} = -\sqrt{15}$

< ■ ▶ < ■ ▶ ■ 夕 Q C October 25, 2018 11 / 32

Question

Suppose we know that $\cos \theta = \frac{2}{\sqrt{13}}$ and $\cot \theta = -\frac{2}{3}$ Which of the following must be true? (a) θ has terminal side in quadrant 4 $C_{os} \theta > 0$ Cot $\theta < 0$ $T_{or} T = T$ (b) $\sin \theta = -\frac{3}{\sqrt{13}}$ (or $\theta = \frac{\cos \theta}{\sin \theta} = -\frac{\cos \theta}{\cos \theta}$ (c) for reference angle θ' , $\tan \theta' = \frac{3}{2}$ $4\pi \theta'^2 \left| \frac{1}{\cos \theta} \right|^2$ (d))All of the above are true.

(e) None of the above is true.