October 31 MATH 1113 sec. 51 Fall 2018

Section 6.3: Angles, Rotations, and Angle Measures

Reference Angles Suppose we want to find the trig values for the angle θ shown. Note that the acute angle (pink) has terminal side through (x, y), and by symmetry the terminal side of θ passes through the point $(-x, y)$ (same y and opposite sign x).

Figure: What is the connection between the trig values for θ and those for the acute angle in pink?

Reference Angles

Definition: Let θ be an angle in standard position. If θ is not a quadrantal angle, then the reference angle θ^{\prime} associated with θ is the angle of measure $0^{\circ}<\theta^{\prime}<90^{\circ}$ between the terminal side of θ and the nearest part of the x-axis.

Example (a)

Determine the reference angle.

Example (b)

Determine the reference angle.

Question

The reference angle for 300° is
(a) -60°
(b) 60°
(c) -30°

(d) 30°

Theorem on Reference Angles

Theorem: If θ^{\prime} is the reference angle for the angle θ, then

$$
\sin \theta^{\prime}=|\sin \theta|, \quad \cos \theta^{\prime}=|\cos \theta| \quad \& \quad \tan \theta^{\prime}=|\tan \theta| .
$$

Remark 1: The analogous relationships hold for the cosecant, secant, and cotangent.

Remark 2: This means that the trigonometric values for θ can differ at most by a sign (+ or -) from the values for θ^{\prime}.

Example: Using Reference Angles
Find the exact value of
(a) $\sin \left(135^{\circ}\right)$
$\theta=135^{\circ}$

$$
\sin \left(135^{\circ}\right)= \pm \sin \left(45^{\circ}\right)
$$

Choose correct sigh quod II \Rightarrow sine is

$$
90^{\circ}<\theta<180^{\circ}
$$

$$
\begin{aligned}
& \sin \left(45^{\circ}\right)=\frac{\sqrt{2}}{2} \\
& \text { so } \quad \sin \left(135^{\circ}\right)=\frac{\sqrt{2}}{2}
\end{aligned}
$$

Example: Using Reference Angles
Find the exact value of

$$
\theta=210^{\circ} \quad 180^{\circ}<\theta<270^{\circ}
$$

(b) $\cos \left(210^{\circ}\right)$

$$
\operatorname{Cos}\left(210^{\circ}\right)= \pm \operatorname{Cos}\left(30^{\circ}\right)
$$

Choose correct sign $\cos \theta<0$ in quad III
so

$$
\cos \left(210^{\circ}\right)=\frac{-\sqrt{3}}{2}
$$

$$
\begin{gathered}
\theta^{\prime}=210^{\circ}-180^{\circ}=30^{\circ} \\
\cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}
\end{gathered}
$$

Question

Suppose θ is an angle such that $270^{\circ}<\theta<360^{\circ}$ and its reference angle θ^{\prime} satisfies

$$
\cos \theta^{\prime}=\frac{2}{3}
$$

The secant of θ,

$$
\sec \theta=\frac{1}{\cos \theta}
$$

(a) $\sec \theta=\frac{3}{2}$, and I'm certain
(b) $\sec \theta=\frac{3}{2}$, but I'm not certain

$$
\begin{gathered}
\cos ^{\sin } \theta>0 \\
\text { in } 9^{00} \text { IV }
\end{gathered}
$$

(c) $\sec \theta=-\frac{3}{2}$, and I'm certain
(d) $\sec \theta=-\frac{3}{2}$, but I'm not certain

More New Trigonometric Identities
Quotient Identities: For any given θ for which both sides are defined

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \& \quad \cot \theta=\frac{\cos \theta}{\sin \theta} .
$$

$\sin \theta=\frac{y}{r}$ and $\cos \theta=\frac{x}{r} \quad \tan \theta=\frac{y}{x}$ so

$$
\frac{\sin \theta}{\cos \theta}=\frac{y \mid r}{x \mid r}=\frac{y}{r} \cdot \frac{r}{x}=\frac{y}{x}=\tan \theta
$$

Example

Use the given information to determine the remaining trigonometric values of θ.
(a) $\sin \theta=\frac{1}{4} \quad$ and $\quad \cos \theta=-\frac{\sqrt{15}}{4}$

$$
\csc \theta=\frac{1}{\sin \theta}=\frac{4}{1}=4
$$

$$
\sec \theta=\frac{1}{\cos \theta}=\frac{-4}{\sqrt{15}}
$$

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{1 / 4}{-\sqrt{15} / 4}=\frac{1}{4} \cdot \frac{4}{-\sqrt{15}}=\frac{-1}{\sqrt{15}}
$$

and

$$
\cot \theta=\frac{1}{\tan \theta}=-\sqrt{15}
$$

Question

Suppose we know that $\cos \theta=\frac{2}{\sqrt{13}}$ and $\cot \theta=-\frac{2}{3}$
Which of the following must be true?

(b) $\sin \theta=-\frac{3}{\sqrt{13}} / \cot \theta=\frac{\cos \theta}{\sin \theta} \Rightarrow \sin \theta=\frac{\cos \theta}{\cot \theta}$
(c) for reference angle $\theta^{\prime}, \tan \theta^{\prime}=\frac{3}{2} \quad \operatorname{ten} \theta^{\prime}=\left|\frac{1}{\cot \theta}\right|$
(d)) All of the above are true.
(e) None of the above is true.

