October 31 MATH 1113 sec. 52 Fall 2018

Section 6.3: Angles, Rotations, and Angle Measures

Reference Angles Suppose we want to find the trig values for the angle θ shown. Note that the acute angle (pink) has terminal side through (*x*, *y*), and by symmetry the terminal side of θ passes through the point (-x, *y*) (same *y* and opposite sign *x*).

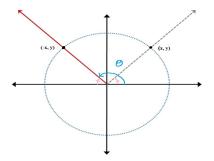
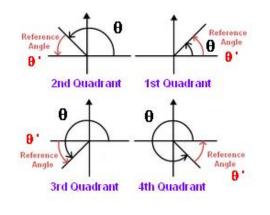


Figure: What is the connection between the trig values for θ and those for the acute angle in pink?

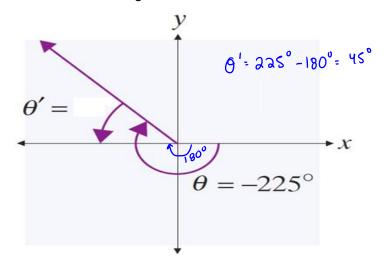
Reference Angles

Definition: Let θ be an angle in standard position. If θ is not a quadrantal angle, then the **reference angle** θ' associated with θ is the angle of measure $0^{\circ} < \theta' < 90^{\circ}$ between the terminal side of θ and the *nearest* part of the *x*-axis.



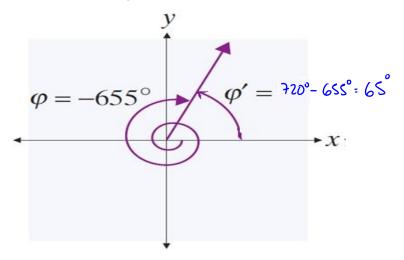
■ ● ● ● ● ○ へ ○
October 25, 2018 2/32

Example (a) Determine the reference angle.



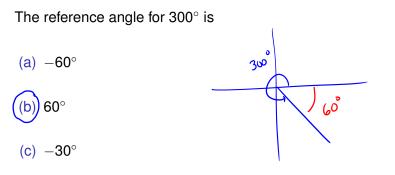
October 25, 2018 3 / 32

Example (b) Determine the reference angle.



October 25, 2018 4 / 32

Question



(d) 30°

э

イロト イヨト イヨト イヨト

Theorem on Reference Angles

Theorem: If θ' is the reference angle for the angle θ , then

$$\sin \theta' = |\sin \theta|, \quad \cos \theta' = |\cos \theta| \quad \& \quad \tan \theta' = |\tan \theta|.$$

Remark 1: The analogous relationships hold for the cosecant, secant, and cotangent.

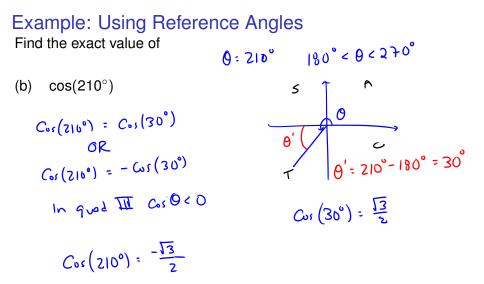
Remark 2: This means that the trigonometric values for θ can differ at most by a sign (+ or -) from the values for θ' .

> October 25, 2018

6/32

Example: Using Reference Angles Find the exact value of IF Q= 135° two 90° CO < 180° sin(135°) (a) Sin (135°) = Sin (45°) 0R Sin(135°) = - Sin(45°) 0'= 180°-135°= 45° we need to choose the right Sign . $Sin(45^\circ) = \frac{\overline{12}}{2}$ 135° is a good II angle Sin (135) >0 $S_{12}(135") = \frac{\sqrt{2}}{2}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



Question

Suppose θ is an angle such that $270^{\circ} < \theta < 360^{\circ}$ and its reference angle θ' satisfies

$$\cos \theta' = \frac{2}{3}. \qquad \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

October 25, 2018

9/32

The secant of θ ,

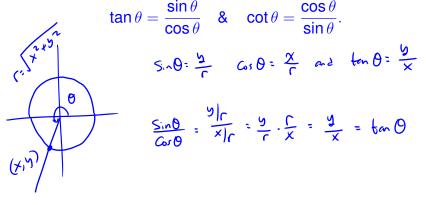
(a) $\sec \theta = \frac{3}{2}$, and I'm certain (b) $\sec \theta = \frac{3}{2}$, but I'm not certain

(c) $\sec \theta = -\frac{3}{2}$, and I'm certain

(d) $\sec \theta = -\frac{3}{2}$, but I'm not certain

More New Trigonometric Identities

Quotient Identities: For any given θ for which both sides are defined



< ロ > < 同 > < 回 > < 回 >

Example

Use the given information to determine the remaining trigonometric values of θ .

(a) $\sin \theta = \frac{1}{4}$ and $\cos \theta = -\frac{\sqrt{15}}{4}$ $C_{SC} \theta = \frac{1}{Sin | \theta} = \frac{4}{1} = 4$ $Sec \theta = \frac{1}{Cor \theta} = \frac{4}{15}$ $t_{en} \Theta = \frac{Sin \Theta}{CorA} = \frac{1/4}{-515/4} = \frac{-1}{515}$ Coto = 1 = -JIS

Question

Suppose we know that $\cos \theta = \frac{2}{\sqrt{13}}$ and $\cot \theta = -\frac{2}{3}$ Which of the following must be true? Which of the following must be true: (a) θ has terminal side in quadrant 4 $\int \cos \theta = 0$ GF $\theta < 0$ I = 0(b) $\sin \theta = -\frac{3}{\sqrt{13}} \int C_0 t \theta = \frac{C_0 t \theta}{\sin \theta} \Rightarrow \sin \theta = \frac{C_0 t \theta}{C_0 t \theta}$ (c) for reference angle θ' , $\tan \theta' = \frac{3}{2}$ $\int_{0}^{1} \cos \theta = \frac{2}{3}$ (d) All of the above are true.

(e) None of the above is true.