October 31 Math 3260 sec. 57 Fall 2017

Section 6.4: Gram-Schmidt Orthogonalization
The goal here is to obtain an orthogonal basis for a vector space. The

Gram-Schmidt process will allow us to generaT%n orthogonal basis if
we start with an arbitrary basis.
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Theorem: Gram Schmidt Process

Let {x1,...,Xp} be any basis for the nonzero subspace W of R".
Define the set of vectors {v4,...,Vp} via
Vi = X4
X2 -Vy
Vo = Xo-—
2 2 <v1 v1> 1
X3V X3V
Vo = xg— (X3Vi)y, _ (X V2],
Vi V4 Vo - Vo
p—1
Xp - V|
p Vi
Vo = Xp— ;.
g P2 (V/ : V/) !
J=1
Then {vy,...,Vp} is an orthogonal basis for W. Moreover, for each
k=1,...,p

Span{vy,..., vk} = Span{xy,...,Xx}.
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Example
Find an orthonormal (that’s orthonormal not just orthogonal) basis for
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Section 6.7 Inner Product Spaces

Definition: An inner product on a vector space V is a function which
assigns to each pair of vectors u and v in V a real number denoted by

< u,V > and that satisfies the following four axioms: For every u, v, w
in V and scalar ¢

i <u,vV>=<vVv.u>,
I <U+V,W>=<UW>+ <V,W >,
i <ecu,v>=c<uv >,

iv <u,u>>0and <u,u>=0ifandonly ifu=0.

A vector space with an inner product is called an inner product space.
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Example

Consider R?, and define the product

< U,V>=2uU1Vy + 4UoVo.

We saw in an in class assignment that this does define an inner
product.
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Example

Consider the vector space P4. For polynomials p(t) and q(t), show
that the product

<p,q>=p(0)q(0) + p(1)q(1)

defines an inner product on Py.
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Example

Show that the product in the previous example is not an inner product
on P, by showing that the last axiom does not hold. In particular, show
that there is a nonzero polynomial p for which < p,p >= 0.
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An Inner Product in P

An element in Po, p = pg + p1t + pot?, has three defining coefficients
Po, p1, and p». So it is not surprising that evaluation at two points is not

sufficient to define an inner product. The following does define an inner
product on Ps:

(p,q) = p(=1)a(=1) + p(0)q(0) + p(1)q(1)
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Norm, Distance, and Orthogonality
Norm: The norm of a vector v is ||v| = /< V,V >.

A Unit Vector: is a vector whose norm is 1.
Distance: The distance between two vectors u and v is |ju — v||.
Orthogonality: Two vectors u and v are orthogonal if <u,v >=0
Orthogonal Projection: The orthogonal projection of v onto u is the
vector

N << v,u >)

v=(——""—|u

<u,u>
Pythagorean Theorem: If u and v are orthogonal, then
lu-+v|[® = Jull® + v
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Example

(a) For the inner product on Py in the previous example, find the norm
of p(t) =1+t
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(b) Find a unit vector in the direction (i.e. a scalar multiple) of p(t).
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Example
(c) Find a polynomial q(t) = qo + g1t that is orthogonal to p(t) = 1 + &.
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