October 31 Math 3260 sec. 58 Fall 2017

Section 6.4: Gram-Schmidt Orthogonalization

The goal here is to obtain an orthogonal basis for a vector space. The Gram-Schmidt process will allow us to generat ann orthogonal basis if we start with an arbitrary basis.

Theorem: Gram Schmidt Process

Let $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ be any basis for the nonzero subspace W of \mathbb{R}^{n}. Define the set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ via

$$
\begin{aligned}
\mathbf{v}_{1} & =\mathbf{x}_{1} \\
\mathbf{v}_{2} & =\mathbf{x}_{2}-\left(\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1} \\
\mathbf{v}_{3} & =\mathbf{x}_{3}-\left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{1}-\left(\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right) \mathbf{v}_{2} \\
& \vdots \\
\mathbf{v}_{p} & =\mathbf{x}_{p}-\sum_{j=1}^{p-1}\left(\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{j}}{\mathbf{v}_{j} \cdot \mathbf{v}_{j}}\right) \mathbf{v}_{j} .
\end{aligned}
$$

Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthogonal basis for W. Moreover, for each $k=1, \ldots, p$

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}
$$

Example
Find an orthonormal (that's orthonormal not just orthogonal) basis for Col A where $A=\left[\begin{array}{ccc}-1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3\end{array}\right]$. well start with the columns of A as

$$
\begin{gathered}
\vec{x}_{1}=\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right], \vec{x}_{2}=\left[\begin{array}{c}
6 \\
-8 \\
-2 \\
-4
\end{array}\right], \vec{x}_{3}=\left[\begin{array}{c}
6 \\
3 \\
6 \\
-3
\end{array}\right] \\
\vec{v}_{1}=\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& \vec{v}_{2}=\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1} \\
& \vec{x}_{2} \cdot \vec{v}_{1}=-6-24-2-4=-36 \\
& \left\|\vec{v}_{1}\right\|^{2}=1^{2}+3^{2}+1^{2}+1^{2}=12 \\
& \vec{v}_{2}=\left[\begin{array}{c}
6 \\
-8 \\
-2 \\
-4
\end{array}\right]-\frac{-36}{12}\left[\begin{array}{l}
-1 \\
3 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
6-3 \\
-8+9 \\
-2+3 \\
-4+3
\end{array}\right]=\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \vec{v}_{3}=\vec{x}_{3}-\frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1}-\frac{\vec{x}_{3} \cdot \vec{v}_{2}}{\left\|\vec{v}_{2}\right\|^{2}} \vec{v}_{2} \\
& \vec{x}_{3} \cdot \vec{v}_{1}=-6+9+6-3=6 \quad\left\|\vec{v}_{1}\right\|^{2}=12 \\
& \vec{x}_{3} \cdot \vec{v}_{2}=18+3+6+3=30 \quad\left\|\vec{v}_{2}\right\|^{2}=12 \\
& \vec{v}_{3}=\left[\begin{array}{l}
6 \\
3 \\
6 \\
-3
\end{array}\right]-\frac{y_{2}}{12}\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right]-\frac{30}{12}\left[\begin{array}{l}
3 \\
1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
6-7 \\
3-4 \\
6-3 \\
-3+2
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-1
\end{array}\right]
\end{aligned}
$$

An orthogonal basis is

$$
\begin{aligned}
& \left\{\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-1
\end{array}\right]\right\} \\
& \left\|\vec{v}_{1}\right\|=\left\|\vec{v}_{2}\right\|=\left\|\vec{v}_{3}\right\|=\sqrt{12}
\end{aligned}
$$

An orthonormat basis is

$$
\left\{\left[\begin{array}{c}
\frac{-1}{\sqrt{12}} \\
\frac{3}{\sqrt{12}} \\
\frac{1}{\sqrt{12}} \\
\frac{1}{\sqrt{12}}
\end{array}\right],\left[\begin{array}{c}
\frac{3}{\sqrt{12}} \\
\frac{1}{\sqrt{12}} \\
\frac{1}{\sqrt{12}} \\
\frac{-1}{\sqrt{12}}
\end{array}\right],\left[\begin{array}{c}
\frac{-1}{\sqrt{12}} \\
\frac{-1}{\sqrt{12}} \\
\frac{3}{\sqrt{12}} \\
\frac{-1}{\sqrt{12}}
\end{array}\right]\right.
$$

Section 6.7 Inner Product Spaces

Definition: An inner product on a vector space V is a function which assigns to each pair of vectors \mathbf{u} and \mathbf{v} in V a real number denoted by $\langle\mathbf{u}, \mathbf{v}\rangle$ and that satisfies the following four axioms: For every $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and scalar c
$\mathrm{i}<\mathbf{u}, \mathbf{v}>=<\mathbf{v}, \mathbf{u}>$,
ii $<\mathbf{u}+\mathbf{v}, \mathbf{w}>=<\mathbf{u}, \mathbf{w}>+<\mathbf{v}, \mathbf{w}>$,
iii $<\mathbf{c u}, \mathbf{v}>=\boldsymbol{c}<\mathbf{u}, \mathbf{v}>$,
iv $<\mathbf{u}, \mathbf{u}>\geq 0$ and $<\mathbf{u}, \mathbf{u}>=0$ if and only if $\mathbf{u}=\mathbf{0}$.
A vector space with an inner product is called an inner product space.

Example

Consider \mathbb{R}^{2}, and define the product

$$
<\mathbf{u}, \mathbf{v}>=2 u_{1} v_{1}+4 u_{2} v_{2}
$$

We saw in an in class assignment that this does define an inner product.

Example
Consider the vector space \mathbb{P}_{1}. For polynomials $\mathbf{p}(t)$ and $\mathbf{q}(t)$, show that the product

$$
<\mathbf{p}, \mathbf{q}>=p(0) q(0)+p(1) q(1)
$$

defines an inner product on \mathbb{P}_{1}.

$$
\langle\vec{p}, \vec{q}\rangle=\vec{p}(0) \vec{q}(0)+\vec{p}(1) \vec{q}(1)=\stackrel{\rightharpoonup}{q}(0) \vec{p}(0)+\vec{q}(1) \vec{p}(1)=\langle\vec{q}, \vec{p}\rangle
$$

property; holds
we defined vector addition

$$
\begin{aligned}
& (\vec{p}+\vec{q})(0)=\vec{p}(0)+\vec{q}(0) \\
& (\vec{p}+\vec{q})(1)=\vec{p}(1)+\vec{q}(1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } \vec{p}, \vec{q}, \vec{r} \text { in } \mathbb{R}_{1} \\
&\langle\vec{p}+\vec{q}, \vec{r}\rangle=(\vec{p}+\vec{q})(0) \vec{r}(0)+(\vec{p}+\vec{q})(1) \vec{r}(1) \\
&=(p(0)+\vec{q}(0)) \vec{r}(0)+(\vec{p}(1)+\vec{q}(1)) \vec{r}(1) \\
&=\vec{p}(0) \vec{r}(0)+\vec{q}(0) \vec{r}(0)+\vec{p}(1) \vec{r}(1)+\vec{q}(1) \vec{r}(1) \\
&=\vec{p}(0) \vec{r}(0)+\vec{p}(1) \vec{r}(1)+\vec{q}(0) \vec{r}(0)+\vec{q}(1) \vec{r}(1) \\
&=\langle\vec{p}, \vec{r}\rangle+\langle\vec{q}, \vec{r}\rangle .
\end{aligned}
$$

propety 2 nolds.

$$
(c \vec{p})(t)=c \vec{p}(t)
$$

$$
\begin{aligned}
\langle c \vec{p}, \vec{q}\rangle= & (c \vec{p})(0) \vec{q}(0)+(c \vec{p})(1) \vec{q}(1) \\
= & c \vec{p}(0) \vec{q}(0)+c \vec{p}(1) \vec{q}(1) \\
= & c(\vec{p}(0) \vec{q}(0)+\vec{p}(1) \vec{q}(1))=c\langle\vec{p}, \vec{q})
\end{aligned}
$$

The propect, ïi holds

Considen

$$
\begin{aligned}
\langle\vec{p}, \vec{p}\rangle & =\vec{p}(0) \vec{p}(0)+\vec{p}(1) \vec{p}(1) \\
& =(\vec{p}(0))^{2}+(\vec{p}(1))^{2} \geqslant 0
\end{aligned}
$$

This is nonnegotive. This wlll be zeno
if and ont, if $\vec{p}(0)=0$ and $\vec{p}(1)=0$.

For \vec{p} in $\mathbb{P}_{1}, \quad \vec{p}=p_{0}+p_{1} t$.

$$
\begin{aligned}
& \vec{p}(0)=p_{0} \text { so } \vec{p}(0)=0 \Leftrightarrow p_{0}=0 \\
& \vec{p}(1)=0 \text { as well } \Rightarrow \vec{p}(1)=p_{1} \cdot 1=0 \Rightarrow p_{1}=0
\end{aligned}
$$

S. $\langle\vec{p}, \vec{p}\rangle=0$ if and on', if $\vec{p}=\overrightarrow{0}$.

The in th propaty also holds so this is an inner product on \mathbb{P}_{1}.

Example
Show that the product in the previous example is not an inner product on \mathbb{P}_{2} by showing that the last axiom does not hold. In particular, show that there is a nonzero polynomial \mathbf{p} for which $\langle\mathbf{p}, \mathbf{p}\rangle=0$.

$$
\begin{aligned}
& \langle\vec{p}, \vec{p}\rangle=(\vec{p}(0))^{2}+(\vec{p}(1))^{2} \geqslant 0 \\
& \ln \mathbb{P}_{2}, \quad \vec{p}=p_{0}+p_{1} t+p_{2} t^{2} \\
& \vec{p}(0)=p_{0} \Rightarrow \vec{p}(0)=0 \Leftrightarrow p_{0}=0 \\
& \vec{p}(1)=p_{1}+p_{2} \Rightarrow \vec{p}(1)=0 \Leftrightarrow p_{1}+p_{2}=0
\end{aligned}
$$

This only, requins $p_{1}=-p_{2}$

Any \vec{p} of the form $\vec{p}(t)=p,\left(t-t^{2}\right)$ would have $\langle\vec{p}, \vec{p}\rangle=0$.

Graphically $y=c\left(x-x^{2}\right)$

An Inner Product in \mathbb{P}_{2}

An element in $\mathbb{P}_{2}, \mathbf{p}=p_{0}+p_{1} t+p_{2} t^{2}$, has three defining coefficients p_{0}, p_{1}, and p_{2}. So it is not surprising that evaluation at two points is not sufficient to define an inner product. The following does define an inner product on \mathbb{P}_{2} :

$$
\langle\mathbf{p}, \mathbf{q}\rangle=\mathbf{p}(-1) \mathbf{q}(-1)+\mathbf{p}(0) \mathbf{q}(0)+\mathbf{p}(1) \mathbf{q}(1)
$$

Norm, Distance, and Orthogonality

Norm: The norm of a vector \mathbf{v} is $\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle}$.
A Unit Vector: is a vector whose norm is 1.

Distance: The distance between two vectors \mathbf{u} and \mathbf{v} is $\|\mathbf{u}-\mathbf{v}\|$.
Orthogonality: Two vectors \mathbf{u} and \mathbf{v} are orthogonal if $\langle\mathbf{u}, \mathbf{v}\rangle=0$

Orthogonal Projection: The orthogonal projection of \mathbf{v} onto \mathbf{u} is the vector

$$
\hat{\mathbf{v}}=\left(\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle}\right) \mathbf{u} .
$$

Pythagorean Theorem: If \mathbf{u} and \mathbf{v} are orthogonal, then

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}
$$

Example
(a) For the inner product on \mathbb{P}_{1} in the previous example, find the norm of $\mathbf{p}(t)=1+t$.

$$
\begin{gathered}
\|\vec{p}\|^{2}=\langle\vec{p}, \vec{p}\rangle=\stackrel{\rightharpoonup}{p}(0) \vec{p}(0)+\vec{p}\left(11 \vec{p}(1)=1^{2}+2^{2}=5\right. \\
\|\vec{p}\|=\sqrt{5}
\end{gathered}
$$

(b) Find a unit vector in the direction (i.e. a scalar multiple) of $\mathbf{p}(t)$.

Calling it $\vec{u}, \vec{u}=\frac{1}{\sqrt{5}} \vec{p}=\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}} t$

Example
(c) Find a polynomial $\mathbf{q}(t)=q_{0}+q_{1} t$ that is orthogonal to $\mathbf{p}(t)=1+t$.

This requites $0:\langle\vec{p}, \vec{q})=\vec{p}(0) \cdot \vec{q}(0)+\vec{p}(1) \vec{q}(1)$

$$
=1 q_{0}+2\left(q_{0}+q_{1}\right)=3 q_{0}+2 q_{1}
$$

An example is when $q_{0}=2$ and $q_{1}=-3$ i.e. an example is $\vec{q}_{q}=2-3 t$.

