October 3 MATH 1113 sec. 51 Fall 2018

New Classes of Functions

Polynomial and Rational functions are examples of Algebraic functions.

Now we wish to move on to a class of functions called Transcendental functions.

We will begin by discussing inverse functions and relations. This will allow us to consider classes of functions called exponential, logarithmic, and trigonometric.

Section 5.1: Inverse Relations and Inverse Functions

 Suppose we have a relation $S=\left\{(1,0),(4,2),\left(\frac{3}{2}, \frac{1}{7}\right),(\pi, 16),(7,2)\right\}$. If one asks
What is the output if the input is 7 ?

we can easily answer by referencing the given pairs. Clearly the answer is 2.

One could also pose a similar question:
What is the input if the output is 2 ?
This question is also easily answered. The answer is 4 or 7 .

We can construct another relation from S by interchanging the inputs and outputs. We'll call this the inverse of S and denote it as follows

$$
S^{-1}=\left\{(0,1),(2,4),\left(\frac{1}{7}, \frac{3}{2}\right),(16, \pi),(2,7)\right\} .
$$

Inverse Relation

Definition: Let S be a relation with domain D and range R. The inverse relation S^{-1} is the relation having domain R and range D defined by ${ }^{1}$

$$
(x, y) \in S^{-1} \quad \text { provided } \quad(y, x) \in S
$$

Recall that a function is a type of relation with the property that each domain element is assigned exactly one element from the range-i.e. no distinct pairs in a function can have the same first element.
${ }^{1}$ Recall that \in means "in," so $(x, y) \in S^{-1}$ is read " (x, y) is an element of S^{-1} 를.

Algebraic Representations

If a relation is defined by an equation, the inverse relation can be written by swapping the variable names. For example, if we consider the relation defined by

$$
y=x^{2}
$$

it's inverse relation would be given by the formula

$$
x=y^{2}
$$

The domains and ranges might be specified or may be infered.

Example
Consider the functions $f_{1}=\{(-2,4),(-1,1),(0,0),(1,1),(2,4)\}$ and $f_{2}=\{(0,0),(1,1),(2,4)\}$.
(a) Write the inverse relations f_{1}^{-1} and f_{2}^{-1}.

$$
\begin{aligned}
& f_{1}^{-1}=\{(4,-2),(1,-1),(0,0),(1,1),(4,2)\} \\
& f_{2}^{-1}=\{(0,0),(1,1),(4,2)\}
\end{aligned}
$$

Example
Consider the functions $f_{1}=\{(-2,4),(-1,1),(0,0),(1,1),(2,4)\}$ and $f_{2}=\{(0,0),(1,1),(2,4)\}$.
(b) Identify the domain and range of each inverse relation.

The domain of f_{1}^{-1} is $\{4,1,0\}$
(This is the range of f_{1})
The range of f_{1}^{-1} is $\{-2,-1,0,1,2\}$
(This is f_{1} 's domain)
The domain of f_{2}^{-1} is $\{0,1,4\}$
The range of f_{2}^{-1} is $\{0,1,2\}$

Question

In the previous example we found the two inverse relations

$$
f_{1}^{-1}=\{(4,-2),(1,-1),(0,0),(1,1),(4,2)\} \quad \text { and } \quad f_{2}^{-1}=\{(0,0),(1,1),(4,2)\} .
$$

Which of the following statements is true?
(a) Neither of these inverse relations are a function.
(b) f_{1}^{-1} is a function, but f_{2}^{-1} is not a function.
(c) f_{1}^{-1} is not a function, but t_{2}^{-1} is a function.
(d) Since f_{1} and f_{2} were functions, both inverse relations are also functions.

Inverse Functions

If we look carefully at the function

$$
f_{1}=\{(-2,4),(-1,1),(0,0),(1,1),(2,4)\}
$$

we can see that the inverse relation f_{1}^{-1} is not going to be a function. At least one second element number appears more than once. This gives us insight into what must be true of a function for its inverse relation to also be a function (called its inverse function).

A function will have an inverse function is each OUTPUT occurs exactly once! There's a name for this.

One to One

Definition: A function f is one to one if different inputs have different outputs. That is, f is one to one provided

$$
a \neq b \text { implies } f(a) \neq f(b) .
$$

Equivalently, f is a one to one function provided

$$
f(a)=f(b) \quad \text { implies } \quad a=b .
$$

Inverse Function

Theorem: If f is a one to one function with domain D and range R, then its inverse f^{-1} is a function with domain R and range D.
Moreover, the inverse function is defined by

$$
\begin{aligned}
& \qquad f^{-1}(x)=y \text { if and only if } f(y)=x . \\
& \text { finverse of } x \text { equols } y
\end{aligned}
$$

11

Characteristic Compositions:

If f is a one to one function with domain D, range R, and with inverse function f^{-1}, then

- for each x in $D,\left(f^{-1} \circ f\right)(x)=x$, and
- for each x in $R,\left(f \circ f^{-1}\right)(x)=x$.

Example: $f(x)=3 x-2$
Show that f is one to one.
well show that $f(a)=f(b)$ implies $a=b$.
Suppose a and b are in the domain of f and $f(a)=f(b)$. Thin

$$
\begin{aligned}
3 a-2 & =3 b-2 \\
3 a & =3 b \\
a & =b
\end{aligned}
$$

(add 2 - both sides)
(divide by 3)

So f is one to one.

Example: $f(x)=3 x-2$
Verify that $f^{-1}(x)=\frac{1}{3}(x+2)$ by showing that $\left(f^{-1} \circ f\right)(x)=x$.

$$
\begin{aligned}
\left(f^{-1} \circ f\right)(x) & =f^{-1}(f(x)) \\
& =f^{-1}(3 x-2) \\
& =\frac{1}{3}((3 x-2)+2) \\
& =\frac{1}{3}(3 x-2+2) \\
& =\frac{1}{3}(3 x) \\
& =x
\end{aligned}
$$

