
October 3 MATH 1113 sec. 52 Fall 2018

New Classes of Functions

Polynomial and Rational functions are examples of Algebraic
functions.

Now we wish to move on to a class of functions called Transcendental
functions.

We will begin by discussing inverse functions and relations. This will
allow us to consider classes of functions called exponential,
logarithmic, and trigonometric.
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Section 5.1: Inverse Relations and Inverse Functions
Suppose we have a relation S =

{
(1,0), (4,2),

(3
2 ,

1
7

)
, (π,16), (7,2)

}
.

If one asks

What is the output if the input is 7?

we can easily answer by referencing the given pairs. Clearly the
answer is 2.

One could also pose a similar question:

What is the input if the output is 2?

This question is also easily answered. The answer is 4 or 7.

We can construct another relation from S by interchanging the inputs
and outputs. We’ll call this the inverse of S and denote it as follows

S−1 =

{
(0,1), (2,4),

(
1
7
,
3
2

)
, (16, π), (2,7)

}
.
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Inverse Relation

Definition: Let S be a relation with domain D and range R. The
inverse relation S−1 is the relation having domain R and range D
defined by1

(x , y) ∈ S−1 provided (y , x) ∈ S.

Recall that a function is a type of relation with the property that each
domain element is assigned exactly one element from the range—i.e.
no distinct pairs in a function can have the same first element.

1Recall that ∈ means ”in,” so (x , y) ∈ S−1 is read ”(x , y) is an element of S−1.”
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Algebraic Representations

If a relation is defined by an equation, the inverse relation can be
written by swapping the variable names. For example, if we consider
the relation defined by

y = x2,

it’s inverse relation would be given by the formula

x = y2.

The domains and ranges might be specified or may be infered.
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Example

Consider the functions f1 = {(−2,4), (−1,1), (0,0), (1,1), (2,4)} and
f2 = {(0,0), (1,1), (2,4)}.

(a) Write the inverse relations f−1
1 and f−1

2 .
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Example

Consider the functions f1 = {(−2,4), (−1,1), (0,0), (1,1), (2,4)} and
f2 = {(0,0), (1,1), (2,4)}.

(b) Identify the domain and range of each inverse relation.
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Question

In the previous example we found the two inverse relations

f−1
1 = {(4,−2), (1,−1), (0, 0), (1, 1), (4, 2)} and f−1

2 = {(0, 0), (1, 1), (4, 2)}.

Which of the following statements is true?

(a) Neither of these inverse relations are a function.

(b) f−1
1 is a function, but f−1

2 is not a function.

(c) f−1
1 is not a function, but f−1

2 is a function.

(d) Since f1 and f2 were functions, both inverse relations are also
functions.
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Inverse Functions

If we look carefully at the function

f1 = {(−2,4), (−1,1), (0,0), (1,1), (2,4)}

we can see that the inverse relation f−1
1 is not going to be a function.

At least one second element number appears more than once. This
gives us insight into what must be true of a function for its inverse
relation to also be a function (called its inverse function).

A function will have an inverse function is each OUTPUT occurs
exactly once! There’s a name for this.
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One to One

Definition: A function f is one to one if different inputs have different
outputs. That is, f is one to one provided

a 6= b implies f (a) 6= f (b).

Equivalently, f is a one to one function provided

f (a) = f (b) implies a = b.
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Inverse Function

Theorem: If f is a one to one function with domain D and range R,
then its inverse f−1 is a function with domain R and range D.
Moreover, the inverse function is defined by

f−1(x) = y if and only if f (y) = x .

Characteristic Compositions:
If f is a one to one function with domain D, range R, and with inverse
function f−1, then

I for each x in D, (f−1 ◦ f )(x) = x , and
I for each x in R, (f ◦ f−1)(x) = x .
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Example: f (x) = 3x − 2

Show that f is one to one.
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Example: f (x) = 3x − 2

Verify that f−1(x) = 1
3(x + 2) by showing that (f−1 ◦ f )(x) = x .
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