October 3 MATH 1113 sec. 52 Fall 2018

New Classes of Functions

Polynomial and Rational functions are examples of *Algebraic* functions.

Now we wish to move on to a class of functions called *Transcendental* functions.

We will begin by discussing inverse functions and relations. This will allow us to consider classes of functions called *exponential*, *logarithmic*, and *trigonometric*.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

September 27, 2018

1/35

Section 5.1: Inverse Relations and Inverse Functions Suppose we have a relation $S = \{(1,0), (4,2), (\frac{3}{2}, \frac{1}{7}), (\pi, 16), (7,2)\}$. If one asks

What is the output if the input is 7?

we can easily answer by referencing the given pairs. Clearly the answer is 2.

One could also pose a similar question:

What is the input if the output is 2?

This question is also easily answered. The answer is 4 or 7.

We can construct another relation from S by interchanging the inputs and outputs. We'll call this the **inverse of** S and denote it as follows

$$S^{-1} = \left\{ (0,1), (2,4), \left(\frac{1}{7}, \frac{3}{2}\right), (16,\pi), (2,7) \right\}.$$

Inverse Relation

Definition: Let *S* be a relation with domain *D* and range *R*. The inverse relation S^{-1} is the relation having domain *R* and range *D* defined by¹

$$(x,y)\in S^{-1}$$
 provided $(y,x)\in S.$

Recall that a **function** is a type of relation with the property that each domain element is assigned exactly one element from the range—i.e. no distinct pairs in a function can have the same first element.

¹Recall that \in means "in," so $(x, y) \in S^{-1}$ is read "(x, y) is an element of S^{-1} " so

Algebraic Representations

If a relation is defined by an equation, the inverse relation can be written by swapping the variable names. For example, if we consider the relation defined by

$$y = x^2$$

it's inverse relation would be given by the formula

$$x = y^2$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

September 27, 2018

4/35

The domains and ranges might be specified or may be infered.

Example

Consider the functions $f_1 = \{(-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4)\}$ and $f_2 = \{(0, 0), (1, 1), (2, 4)\}.$

(a) Write the inverse relations f_1^{-1} and f_2^{-1} .

 $f_{i}^{-1} = \{(u_{i}, -2), (1, -1), (o_{i}, o), (1, 1), (u_{i}, 2)\}$

 $f_{z}^{-1} = \{(o, o), (1, 1), (4, 2)\}$

イロト 不得 トイヨト イヨト ヨー ろくの

Example

Consider the functions $f_1 = \{(-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4)\}$ and $f_2 = \{(0, 0), (1, 1), (2, 4)\}.$

(b) Identify the domain and range of each inverse relation.

The domain of
$$f_1^{-1}$$
 is $\{4,1,0\}$
(This is the range of f_1)
The range of f_1^{-1} is $\{-2,-1,0,1,2\}$.
(This is the domain of f_1)
The domain of f_2^{-1} is $\{0,1,4\}$
The range of f_2^{-1} is $\{0,1,2\}$

Question

In the previous example we found the two inverse relations

 $f_1^{-1} = \{(4, -2), (1, -1), (0, 0), (1, 1), (4, 2)\}$ and $f_2^{-1} = \{(0, 0), (1, 1), (4, 2)\}.$

Which of the following statements is true?

(a) Neither of these inverse relations are a function.

(b) f_1^{-1} is a function, but f_2^{-1} is not a function.

((c))
$$f_1^{-1}$$
 is not a function, but f_2^{-1} is a function.

(d) Since f_1 and f_2 were functions, both inverse relations are also functions.

イロト 不得 トイヨト イヨト ヨー ろくの

September 27, 2018 7 / 35

Inverse Functions

If we look carefully at the function

$$f_1 = \{(-2,4), (-1,1), (0,0), (1,1), (2,4)\}$$

we can see that the inverse relation f_1^{-1} is not going to be a function. At least one second element number appears more than once. This gives us insight into what must be true of a function for its inverse relation to also be a function (called its *inverse function*).

A function will have an inverse **function** is each OUTPUT occurs exactly once! There's a name for this.

A D N A D N A D N A D N B D

Definition: A function f is **one to one** if different inputs have different outputs. That is, f is one to one provided

 $a \neq b$ implies $f(a) \neq f(b)$.

Equivalently, f is a one to one function provided

f(a) = f(b) implies a = b.

September 27, 2018

9/35

Inverse Function

n.

Theorem: If f is a one to one function with domain D and range R, then its inverse f^{-1} is a function with domain *R* and range *D*. Moreover, the inverse function is defined by

$$f^{-1}(x) = y$$
 if and only if $f(y) = x$.
 \downarrow
 f injerse of \times equals \checkmark

Characteristic Compositions:

If f is a one to one function with domain D, range R, and with inverse function f^{-1} . then

> September 27, 2018

10/35

- for each x in D, $(f^{-1} \circ f)(x) = x$, and
- for each x in R, $(f \circ f^{-1})(x) = x$.

Example: f(x) = 3x - 2

Show that f is one to one. will show that f(a)=f(b) implies a=b. let a and b be in the domain of f and Then suppose f(a) = f(b). (add 2 to both side) 3a-2 = 3b-2 (divide both sides by 3) 3a=3b a=b So f is one to one.

Example:
$$f(x) = 3x - 2$$

Verify that $f^{-1}(x) = \frac{1}{3}(x+2)$ by showing that $(f^{-1} \circ f)(x) = x$.

$$(f^{-1} \circ f)(x) = f^{-1}(f(x))$$

= $f^{-1}(3x-2)$
= $\frac{1}{3}((3x-2)+2)$
= $\frac{1}{3}(3x-2+2)$
= $\frac{1}{3}(3x)$
= x

<ロ> <四> <四> <四> <四> <四</p>