Oct. 3 Math 1190 sec. 51 Fall 2016

Section 3.3: Derivatives of Logarithmic Functions
Recall: If a> 0 and a # 1, we denote the base a logarithm of x by
log, x

This is the inverse function of the (one to one) function y = a*. So we
can define log, x by the statement

y =log,x ifandonlyif x=a"

Our present goal is to use our knowledge of the derivative of an
exponential function, along with the chain rule, to come up with a
derivative rule for logarithmic functions.



Properties of Logarithms

We recall several useful properties of logarithms.

Let a, b, x, y be positive real numbers with a# 1 and b # 1, and let r
be any real number.

> log,(xy) = log,(x) + log,(y)
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log,,(x) = 1296() (the change of base formula)
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Questions
(1) In the expression In(x), what is the base?
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(2) Which of the following expressions is equivalent to
log, <x3\/y2 - 1)

(a) loga(x®) — 3 loga(y? — 1)
(b) 3log,(x(y? —1))

log,(x) + 3 loga(y® — 1)

(d) 3logy(x) + %|092(y2) - %|092(1)



Properties of Logarithms

Additional properties that are useful.
» f(x) = log,(x), has domain (0, c0) and range (—oo, c0).

» Fora>1,"*

Xll)rr01+ log,(x) = —c0 and Xﬂ)moo log,(x) = 0o

» ForO<a<1,

Xirrg)f log,(x) = oo and Xﬂmoologa(x) = —00

In advanced mathematics (and in light of the change of base formula),
we usually restrict our attention to the natural log.



Graphs of Logarithms:Logarithms are continuous on
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Figure: Plots of functions of the type f(x) = log,(x). The value of a > 1 on
the left, and 0 < a < 1 on the right.



Examples
Evaluate each limit.
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Questions

Evaluate the limit

lim In 1
X—00 x2

(d) The limit doesn’t exist.
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Logarithms are Differentiable on Their Domain

a1 D<a<t

Figure: Recall f(x) = &* is differentiable on (—oo, 00). The graph of log,(x) is
a reflection of the graph of & in the line y = x. So f(x) = log,(x) is
differentiable on (0, co).



The Derivative of y = log,(x)

To find a derivative rule for y = log,(x), we use the chain rule (i.e.
implicit differentiation).

Let y = log,(x), then x = &".
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d log(x) = 1
dx 09aX) = xIn(a)
Examples: Evaluate each derivative.
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True or False The derivative of the natural log
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The function In|x]|

>
Recall that |x| = { 7;’ i; 8 . Use this to derive the rule
d In|x| = 1
dx X
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Differentiating Functions Involving Logs

We can combine our new rule with our existing derivative rules.

Chain Rule: Let u be a differentiable function. Then

d 1 adu U(x)
ax 199 = i@ ax ~ ulx) na)”

In particular

d _ldu U(x)
o "W =T T u)



Examples
Evaluate each derivative.
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Example
Determine % if xIlny+ylnx=10.
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Find y' if y = x (In x)2.

(b) yy=2Inx+2

@y/:(lnx)2+2lnx

(d) ' =In(x?) + 2
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Questions

Use implicit differentiation to find % it y?Inx=x+y.
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