Oct. 3 Math 1190 sec. 51 Fall 2016

Section 3.3: Derivatives of Logarithmic Functions

Recall: If a > 0 and $a \neq 1$, we denote the **base** *a* **logarithm** of *x* by

 $\log_a x$

This is the inverse function of the (one to one) function $y = a^x$. So we can define $\log_a x$ by the statement

$$y = \log_a x$$
 if and only if $x = a^y$.

Our present goal is to use our knowledge of the derivative of an exponential function, along with the chain rule, to come up with a derivative rule for logarithmic functions.

Properties of Logarithms

We recall several useful properties of logarithms.

Let a, b, x, y be positive real numbers with $a \neq 1$ and $b \neq 1$, and let r be any real number.

$$\blacktriangleright \log_a(xy) = \log_a(x) + \log_a(y)$$

►
$$\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$$

► $\log_a(x^r) = r \log_a(x)$
► $\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$ (the change of base formula)

▶ log_a(1) = 0

Questions

(1) In the expression ln(x), what is the base?

(a) 10

(b) 1

(2) Which of the following expressions is equivalent to

$$\log_2\left(x^3\sqrt{y^2-1}\right)$$

(a)
$$\log_2(x^3) - \frac{1}{2}\log_2(y^2 - 1)$$

(b) $\frac{3}{2}\log_2(x(y^2 - 1))$
(c) $3\log_2(x) + \frac{1}{2}\log_2(y^2 - 1)$
(d) $3\log_2(x) + \frac{1}{2}\log_2(y^2) - \frac{1}{2}\log_2(1)$

Properties of Logarithms

Additional properties that are useful.

▶ $f(x) = \log_a(x)$, has domain $(0, \infty)$ and range $(-\infty, \infty)$.

For a > 1, * $\lim_{x \to 0^+} \log_a(x) = -\infty \quad \text{and} \quad \lim_{x \to -\infty} \log_a(x) = \infty$ For 0 < a < 1, $\lim_{x \to 0^+} \log_a(x) = \infty \quad \text{and} \quad \lim_{x \to -\infty} \log_a(x) = -\infty$

In advanced mathematics (and in light of the change of base formula), we usually restrict our attention to the natural log.

Figure: Plots of functions of the type $f(x) = \log_a(x)$. The value of a > 1 on the left, and 0 < a < 1 on the right.

Examples

Evaluate each limit.

 $\lim_{x\to 0^+}\ln(\sin(x)) = -\infty$ (a)

Note
$$e > 1$$

 $\lim_{x \to 0^+} \ln(x) = -\infty$

as
$$x \to 0^+$$
, $\sin x \to 0^+$

 $\lim_{x \to \frac{\pi}{2}^{-}} \ln(\tan(x)) = \bowtie$ (b)

Logarithms are Differentiable on Their Domain

Figure: Recall $f(x) = a^x$ is differentiable on $(-\infty, \infty)$. The graph of $\log_a(x)$ is a reflection of the graph of a^x in the line y = x. So $f(x) = \log_a(x)$ is differentiable on $(0, \infty)$.

The Derivative of $y = \log_a(x)$

To find a derivative rule for $y = \log_a(x)$, we use the chain rule (i.e. implicit differentiation).

Let $y = \log_a(x)$, then $x = a^y$. $\frac{d}{dx} x = \frac{d}{dx} a^3$ $1 = a^{2}ha \cdot \frac{dy}{dx}$ but a = x, so $\Rightarrow \frac{dy}{dx} = \frac{1}{a^{2} \ln a}$ $\frac{d}{dx} \log_a x = \frac{1}{x \ln a}$

$$\frac{d}{dx}\log_a(x) = \frac{1}{x\ln(a)}$$

Examples: Evaluate each derivative.

(a)
$$\frac{d}{dx}\log_3(x) = \frac{1}{x \ln 3}$$
, here $a=3$
(b) $\frac{d}{d\theta}\log_{\frac{1}{2}}(\theta) = \frac{1}{\theta \ln(\frac{1}{2})}$, here $a=\frac{1}{2}$

Question

 $\frac{d}{dx} \log_a x = \frac{1}{x \ln a}$

True or False The derivative of the natural log

$$\frac{d}{dx}\ln(x)=\frac{1}{x}.$$

The function $\ln |x|$

Recall that $|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$. Use this to derive the rule $\frac{d}{dx}\ln|x|=\frac{1}{x}.$ If x>0, then 1x1=x. So for x>0 InIXI = In X and $\frac{d}{dx} \ln |x| = \frac{d}{dx} \ln x = \frac{1}{x}$

$$|f \times < 0 , |x| = -x , \text{ So for } x < 0$$

$$l_{n} |x| = l_{n} (-x) , \text{ and}$$

$$\frac{d}{dx} l_{n} |x| = \frac{d}{dx} l_{n} (-x) = \frac{1}{(-x)} \cdot \frac{d}{dx} (-x)$$
Channel
$$\frac{d}{dx} f(g(x)) = f'(g(x)) g'(x) = \frac{-1}{-x} = \frac{1}{x}$$
Combined, we have
$$\frac{d}{dx} l_{n} |x| = \frac{1}{x} \cdot$$

Differentiating Functions Involving Logs

We can combine our new rule with our existing derivative rules.

Chain Rule: Let u be a differentiable function. Then

$$\frac{d}{dx}\log_a(u) = \frac{1}{u\ln(a)}\frac{du}{dx} = \frac{u'(x)}{u(x)\ln(a)}$$

In particular

$$\frac{d}{dx}\ln(u) = \frac{1}{u}\frac{du}{dx} = \frac{u'(x)}{u(x)}.$$

Examples

Evaluate each derivative.

(a) $\frac{d}{dx} \ln|\tan x|$

= <u>Sec X</u> ton X

absolute value bars don't affect the derivative tube for the log.

here u= tonx ond u'= Sec²x

Example

Determine $\frac{dy}{dx}$ if $x \ln y + y \ln x = 10$.

Questions

Find y' if
$$y = x (\ln x)^2$$
.
(a) $y' = \frac{2\ln x}{x}$
(b) $y' = 2\ln x + 2$
(c) $y' = (\ln x)^2 + 2\ln x$
 $product rule ul Choin rule
 $y' = 1 \cdot (l_{n,x})^2 + x \left[a(l_{n,x}) \cdot \frac{1}{x} \right]$
 $= (l_{n,x})^2 + 2 \ln x$$

(d) $y' = \ln(x^2) + 2$

Questions

Use implicit differentiation to find $\frac{dy}{dx}$ if $y^2 \ln x = x + y$.

(a)
$$\frac{dy}{dx} = \frac{x - y^2}{2xy \ln x - x}$$
$$\frac{\frac{d}{dx}}{\frac{d^2}{dx}} \frac{y^2 \ln x}{1 + y^2} = \frac{1}{2y \ln x - 1}$$
(b)
$$\frac{dy}{dx} = \frac{1}{2y \ln x - 1}$$
$$\frac{\frac{d}{dx}}{\frac{d^2}{dx}} \frac{y^2 \ln x}{\frac{d^2}{dx}} + \frac{y^2}{\frac{d^2}{dx}} = 1 + \frac{dy}{dx}$$
(c)
$$\frac{dy}{dx} = y^2 \ln x - 1$$
$$\frac{x}{1} \left(2y \ln x + \frac{dy}{dx} + \frac{y^2}{\frac{d^2}{x}} \right) = \left(1 + \frac{dy}{dx} \right) \frac{x}{1}$$
(c)
$$\frac{dy}{dx} = \frac{x}{2y - x}$$
$$\frac{dy}{dx} + \frac{dy}{dx} + \frac{y^2}{\frac{d^2}{x}} = x + x \frac{dy}{dx}$$