Oct. 3 Math 1190 sec. 52 Fall 2016

Section 3.3: Derivatives of Logarithmic Functions

Recall: If $a>0$ and $a \neq 1$, we denote the base a logarithm of x by

$$
\log _{a} x
$$

This is the inverse function of the (one to one) function $y=a^{x}$. So we can define $\log _{a} x$ by the statement

$$
y=\log _{a} x \quad \text { if and only if } x=a^{y} .
$$

Our present goal is to use our knowledge of the derivative of an exponential function, along with the chain rule, to come up with a derivative rule for logarithmic functions.

Properties of Logarithms

We recall several useful properties of logarithms.
Let a, b, x, y be positive real numbers with $a \neq 1$ and $b \neq 1$, and let r be any real number.

- $\log _{a}(x y)=\log _{a}(x)+\log _{a}(y)$
- $\log _{a}\left(\frac{x}{y}\right)=\log _{a}(x)-\log _{a}(y)$

- $\log _{a}\left(x^{r}\right)=r \log _{a}(x)$
$-\log _{a}(x)=\frac{\log _{b}(x)}{\log _{b}(a)}$
(the change of base formula)
- $\log _{a}(1)=0$

Questions

(1) In the expression $\ln (x)$, what is the base?
(a) 10
(b) 1
(c) e
(2) Which of the following expressions is equivalent to

$$
\log _{2}\left(x^{3} \sqrt{y^{2}-1}\right)
$$

(a) $\log _{2}\left(x^{3}\right)-\frac{1}{2} \log _{2}\left(y^{2}-1\right)$
(b) $\frac{3}{2} \log _{2}\left(x\left(y^{2}-1\right)\right)$
(c) $3 \log _{2}(x)+\frac{1}{2} \log _{2}\left(y^{2}-1\right)$
(d) $3 \log _{2}(x)+\frac{1}{2} \log _{2}\left(y^{2}\right)-\frac{1}{2} \log _{2}(1)$

Properties of Logarithms

Additional properties that are useful.

- $f(x)=\log _{a}(x)$, has domain $(0, \infty)$ and range $(-\infty, \infty)$.
- For $a>1$, *

$$
\lim _{x \rightarrow 0^{+}} \log _{a}(x)=-\infty \quad \text { and } \quad \lim _{x \rightarrow \infty} \log _{a}(x)=\infty
$$

- For $0<a<1$,

$$
\lim _{x \rightarrow 0^{+}} \log _{a}(x)=\infty \quad \text { and } \quad \lim _{x \rightarrow \infty} \log _{a}(x)=-\infty
$$

In advanced mathematics (and in light of the change of base formula), we usually restrict our attention to the natural log.

Graphs of Logarithms:Logarithms are continuous on

 $(0, \infty)$.

Figure: Plots of functions of the type $f(x)=\log _{a}(x)$. The value of $a>1$ on the left, and $0<a<1$ on the right.

Examples

$$
\lim _{x \rightarrow 0^{+}} \ln x=-\infty
$$

Evaluate each limit.
(a) $\lim _{x \rightarrow 0^{+}} \ln (\sin (x))=-\infty$
as $x \rightarrow 0^{+}, \sin x \rightarrow 0^{+}$

$$
\lim _{x \rightarrow \infty} \ln x=\infty
$$

(b) $\quad \lim _{x \rightarrow \frac{\pi}{2}^{-}} \ln (\tan (x))=\infty$

$$
\lim _{x \rightarrow \frac{\pi}{2}^{-}} \tan x=\infty
$$

Questions

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \ln x=-\infty \\
& \lim _{x \rightarrow \infty} \ln x=\infty
\end{aligned}
$$

Evaluate the limit $\lim _{x \rightarrow \infty} \ln \left(\frac{1}{x^{2}}\right)$
(a) $-\infty$
(b) 0
(c) ∞
(d) The limit doesn't exist.

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{2}}=0
$$

and $\frac{1}{x^{2}} \rightarrow 0^{+}$

$$
\text { as } x \rightarrow \infty
$$

Logarithms are Differentiable on Their Domain

Figure: Recall $f(x)=a^{x}$ is differentiable on $(-\infty, \infty)$. The graph of $\log _{a}(x)$ is a reflection of the graph of a^{x} in the line $y=x$. So $f(x)=\log _{a}(x)$ is differentiable on $(0, \infty)$.

The Derivative of $y=\log _{a}(x)$
To find a derivative rule for $y=\log _{a}(x)$, we use the chain rule (ie. implicit differentiation).

Let $y=\log _{a}(x)$, then $x=a^{y}$.

$$
\begin{aligned}
\frac{d}{d x} x & =\frac{d}{d x} a^{y} \\
1 & =a^{y} \ln a \cdot \frac{d y}{d x} \\
\Rightarrow \quad \frac{d y}{d x} & =\frac{1}{a^{y} \ln a \quad \text { use } x=a^{y}} \\
\frac{d y}{d x} & =\frac{1}{x \ln a} \Rightarrow \frac{d}{d x} \log _{a} x=\frac{1}{x \ln a}
\end{aligned}
$$

$$
\frac{d}{d x} \log _{a}(x)=\frac{1}{x \ln (a)}
$$

Examples: Evaluate each derivative.
(a) $\frac{d}{d x} \log _{3}(x)=\frac{1}{x \ln 3}$, here $a=3$
(b) $\frac{d}{d \theta} \log _{\frac{1}{2}}(\theta)=\frac{1}{\theta \ln \left(\frac{1}{2}\right)}$, here $a=\frac{1}{2}$

Question

$$
\frac{d}{d x} \log _{a} x=\frac{1}{x \ln a}
$$

True or False The derivative of the natural log

$$
\frac{d}{d x} \ln (x)=\frac{1}{x}
$$

True. $a=e$ and $\ln e=1$

The function $\ln |x|$
Recall that $|x|=\left\{\begin{aligned} x, & x \geq 0 \\ -x, & x<0\end{aligned}\right.$. Use this to derive the rule

$$
\frac{d}{d x} \ln |x|=\frac{1}{x}
$$

If $x>0$, then $|x|=x$. So

$$
\begin{aligned}
& \ln |x|=\ln x \quad \text { if } x>0 \text {, and } \\
& \frac{d}{d x} \ln |x|=\frac{d}{d x} \ln x=\frac{1}{x}
\end{aligned}
$$

If $x<0$, then $|x|=-x$. So for $x<0$ $\ln |x|=\ln (-x)$. Then by the choin rule

$$
\begin{aligned}
\frac{d}{d x} \ln |x|=\frac{d}{d x} \ln (-x) & =\frac{1}{-x} \cdot \frac{d}{d x}(-x) \\
& =\frac{1}{-x} \cdot(-1)=\frac{1}{x}
\end{aligned}
$$

So $\quad \frac{d}{d x} \ln |x|=\frac{1}{x} \quad$ for all real $x \neq 0$.

Differentiating Functions Involving Logs

We can combine our new rule with our existing derivative rules.

Chain Rule: Let u be a differentiable function. Then

$$
\frac{d}{d x} \log _{a}(u)=\frac{1}{u \ln (a)} \frac{d u}{d x}=\frac{u^{\prime}(x)}{u(x) \ln (a)}
$$

In particular

$$
\frac{d}{d x} \ln (u)=\frac{1}{u} \frac{d u}{d x}=\frac{u^{\prime}(x)}{u(x)}
$$

Examples
Evaluate each derivative.
(a) $\frac{d}{d x} \ln |\tan x|$

$$
=\frac{\sec ^{2} x}{\tan x}
$$

here
$u=\tan x$ and

$$
u^{\prime}(x)=\sec ^{2} x
$$

Example
(b) $\frac{d}{d t} \sqrt{\log _{3}(t)}=\frac{d}{d t}\left(\log _{3}(t)\right)^{1 / 2}$

$$
\begin{aligned}
& =\frac{1}{2}\left(\log _{3}(t)\right)^{\frac{1}{2}-1} \cdot \frac{1}{t \ln 3} \\
& =\frac{1}{2}\left(\log _{3}(t)\right)^{-12} \cdot \frac{1}{t \ln 3} \\
& =\frac{1}{2 t \ln 3 \sqrt{\log _{3}(t)}}
\end{aligned}
$$

Example
Determine $\frac{d y}{d x}$ if $\quad x \ln y+y \ln x=10$.

$$
\frac{d}{d x}(x \ln y+y \ln x)=\frac{d}{d x}(10)
$$

$1 \quad 1$
products

$$
\begin{aligned}
& \left(\frac{d}{d x} x\right) \ln y+x\left(\frac{d}{d x} \ln y\right)+\left(\frac{d}{d x} y\right) \ln x+y\left(\frac{d}{d x} \ln x\right)=0 \\
& 1 \cdot \ln y+x \cdot \frac{1}{y} \cdot \frac{d y}{d x}+\frac{d y}{d x} \ln x+y \cdot \frac{1}{x}=0
\end{aligned}
$$

$$
\begin{aligned}
& x^{0} \\
& x y\left(\ln y+\frac{x}{y} \frac{d y}{d x}+\ln x \frac{d y}{d x}+\frac{y}{x}\right)=0 \cdot(x y)
\end{aligned}
$$

$$
\begin{gathered}
x y \ln y+x^{2} \frac{d y}{d x}+x y \ln x \frac{d y}{d x}+y^{2}=0 \\
\left(x^{2}+x y \ln x\right) \frac{d y}{d x}=-y^{2}-x y \ln y \\
\frac{d y}{d x}=\frac{-y^{2}-x y \ln y}{x^{2}+x y \ln x}
\end{gathered}
$$

Questions

Find y^{\prime} if $y=x(\ln x)^{2}$.

$$
\begin{aligned}
y^{\prime} & =1 \cdot(\ln x)^{2}+x\left(2(\ln x) \cdot \frac{1}{x}\right) \\
& =(\ln x)^{2}+2 \ln x
\end{aligned}
$$

(b) $y^{\prime}=2 \ln x+2$
(c) $y^{\prime}=(\ln x)^{2}+2 \ln x$
(d) $y^{\prime}=\ln \left(x^{2}\right)+2$

Questions

Use implicit differentiation to find $\frac{d y}{d x}$ if $\quad y^{2} \ln x=x+y$.
((a)) $\frac{d y}{d x}=\frac{x-y^{2}}{2 x y \ln x-x}$

$$
\begin{aligned}
& \frac{d}{d x}\left(y^{2} \ln x\right)=\frac{d}{d x}(x+y) \\
& 2 y \frac{d y}{d x} \ln x+y^{2} \cdot \frac{1}{x}=1+\frac{d y}{d x}
\end{aligned}
$$

(b) $\frac{d y}{d x}=\frac{1}{2 y \ln x-1}$

$$
x\left(2 y \ln x \frac{d y}{d x}+\frac{y^{2}}{x}\right)=x\left(1+\frac{d y}{d x}\right)
$$

(c) $\frac{d y}{d x}=y^{2} \ln x-1$
$2 x y \ln x \frac{d y}{d x}+y^{2}=x+x \frac{d y}{d y}$
(c) $\frac{d y}{d x}=\frac{x}{2 y-x}$

Using Properties of Logs
Properties of logarithms can be used to simplify expressions characterized by products, quotients and powers.

Illustrative Example: Evaluate $\frac{d}{d x} \ln \left(\frac{x^{2} \cos (2 x)}{\sqrt[3]{x^{2}+x}}\right)$
Note

$$
\begin{aligned}
\ln \left(\frac{x^{2} \cos (2 x)}{\sqrt[3]{x^{2}+x}}\right) & =\ln \left(x^{2} \cos (2 x)\right)-\ln \sqrt[3]{x^{2}+x} \\
& =\ln x^{2}+\ln \cos (2 x)-\ln \left(x^{2}+x\right)^{\frac{1}{3}} \\
& =2 \ln x+\ln \cos (2 x)-\frac{1}{3} \ln \left(x^{2}+x\right)
\end{aligned}
$$

$$
\frac{d}{d x} \ln \left(\frac{x^{2} \cos (2 x)}{\sqrt[3]{x^{2}+x}}\right)=\frac{d}{d x}\left(2 \ln x+\ln \left(\cos (2 x)-\frac{1}{3} \ln \left(x^{2}+x\right)\right)\right.
$$

Recoll

$$
=2 \cdot \frac{1}{x}+\frac{-\sin (2 x) \cdot 2}{\cos (2 x)}-\frac{1}{3} \frac{2 x+1}{x^{2}+x}
$$

$$
\frac{d}{d x} \ln u=\frac{u^{\prime}(x)}{u(x)}
$$

$$
=\frac{2}{x}-\frac{2 \sin (2 x)}{\cos (2 x)}-\frac{1}{3} \frac{2 x+1}{x^{2}+x}
$$

