Oct 3 Math 2306 sec. 53 Fall 2018

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials, like $e^{m x} m$-constent
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Motivating Example
Find a particular solution of the ODE
well assume that since $g(x)=8 x+1$ is a $1^{\text {st }}$ decree polynomid, y_{p} is also a $1^{\text {st }}$ degree polynomid.

Let $y_{p}=A x+B$ for some numbers $A+B$.
we try to find A, B to fit the $O D E$. Substitute:
we require

$$
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=8 x+1
$$

$$
\begin{aligned}
& y_{p}=A x+B \\
& y_{p}^{\prime}=A \\
& y_{p}^{\prime \prime}=0
\end{aligned}
$$

$$
\begin{gathered}
0-4(A)+4(A x+B)=8 x+1 \\
-4 A+4 A x+4 B=8 x+1 \\
4 A x+(-4 A+4 B)=8 x+1
\end{gathered}
$$

Match coefficients

$$
\left.\begin{array}{l}
4 A=8 \\
-4 A+4 B=1
\end{array}\right\} \Rightarrow \begin{aligned}
& A=2 \\
& B=\frac{1}{4}(1+4 A)=\frac{1}{4}(1+8)=\frac{9}{4}
\end{aligned}
$$

So the particular solution is

$$
y_{p}=2 x+\frac{9}{4}
$$

The Method: Assume y_{p} has the same form as $g(x)$

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}
$$

weill assume that $y_{p}=A e^{-3 x}$
substitute:

$$
\begin{aligned}
& y_{p}^{\prime}=-3 A e^{-3 x} \\
& y_{p}^{\prime \prime}=9 A e^{-3 x}
\end{aligned}
$$

$$
\begin{aligned}
& 9 A e^{-3 x}-4\left(-3 A e^{-3 x}\right)+4\left(A e^{-3 x}\right)=6 e^{-3 x} \\
& e^{-3 x}(9 A+12 A+4 A)=6 e^{-3 x}
\end{aligned}
$$

$$
25 A e^{-3 x}=6 e^{-3 x}
$$

Matching gives

$$
\begin{aligned}
25 A & =6 \\
A & =\frac{6}{25}
\end{aligned}
$$

Or particular solution is

$$
y_{p}=\frac{6}{25} e^{-3 x}
$$

Make the form general

$$
y^{\prime \prime}-4 y^{\prime}+4 y=16 x^{2}
$$

$g(x)=16 x^{2}$ is a constant times x^{2}. (it is also a quadratic function)
ut's suppose that $y_{p}=A x^{2}$. Substitute

$$
\begin{gathered}
y_{p}^{\prime}=2 A x \\
y_{p}^{\prime \prime}=2 A \\
2 A-4(2 A x)+4\left(A x^{2}\right)=16 x^{2} \\
4 A x^{2}-8 A x+2 A=16 x^{2}+0 x+0 \\
=
\end{gathered}
$$

Matching gives

$$
\left.\begin{array}{rl}
4 A & =16 \\
-8 A & =0 \\
2 A & =0
\end{array}\right\} \Rightarrow \quad A=4 \text { and } A=0
$$

we didn'l allow for x or constant terms. We Should think of $g(x)=16 x^{2}$ as a $2^{\text {nd }}$ degue polynomide. Let $y_{p}=A x^{2}+B x+C$.

$$
\begin{aligned}
& y_{p}^{\prime}=2 A x+B \\
& y_{p}^{\prime \prime}=2 A
\end{aligned}
$$

Substitute

$$
\begin{aligned}
& \text { Substitute } \\
& \qquad 2 A-4(2 A x+B)+4\left(A x^{2}+B x+C\right)=16 x^{2} \\
& 4 A x^{2}+(-8 A+4 B) x+(2 A-4 B+4 C)=16 x^{2}+0 x+0
\end{aligned}
$$

September 27, 2018

Matching:

$$
\left.\begin{array}{ll}
4 A & =16 \\
-8 A+4 B & =0 \\
2 A-4 B+4 C & =0
\end{array}\right\} \Rightarrow \begin{aligned}
& A=4 \\
& B=\frac{1}{4}(8 A): 2 A=8 \\
& C=\frac{1}{4}(4 B-2 A) \\
& \\
&
\end{aligned}=\frac{1}{4}(32-8)=\frac{24}{4}=6
$$

So $y_{p}=4 x^{2}+8 x+6$

General Form: sines and cosines

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)
$$

If we assume that $y_{p}=A \sin (2 x)$, taking two derivatives would lead to the equation

$$
-4 A \sin (2 x)-2 A \cos (2 x)=20 \sin (2 x)
$$

This would require (matching coefficients of sines and cosines)

$$
-4 A=20 \text { and } \quad-2 A=0
$$

This is impossible as it would require $-5=0$!

General Form: sines and cosines

We must think of our equation $y^{\prime \prime}-y^{\prime}=20 \sin (2 x)$ as

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)+0 \cos (2 x)
$$

The correct format for y_{p} is

$$
y_{p}=A \sin (2 x)+B \cos (2 x)
$$

General Form: sines and cosines

$$
y^{\prime \prime}-y^{\prime}=20 \sin (2 x)+0 \cos (2 x)
$$

If $y_{p}=A \sin (2 x)+B \cos (2 x)$, then we get

$$
\begin{aligned}
y_{p}^{\prime \prime}-y_{p}^{\prime} & =-4 A \sin (2 x)-4 B \cos (2 x)-2 A \cos (2 x)+2 B \sin (2 x) \\
& =20 \sin (2 x)+0 \cos (2 x)
\end{aligned}
$$

We can match coefficients of $\sin (2 x)$ and $\cos (2 x)$ giving a solvable set of equations

$$
-4 A+2 B=20 \quad \text { and } \quad-2 A-4 B=0 \quad \Longrightarrow \quad A=-4, \quad B=2
$$

The particular solution is

$$
y_{p}=-4 \sin (2 x)+2 \cos (2 x)
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(a) $g(x)=1$ (or really any constant)

Degree 0 polynomial

$$
y_{p}=A
$$

(b) $g(x)=x-7$ Degree 1 poly.

$$
y_{p}=A x+B
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(c) $g(x)=5 x^{2} \quad$ Deqree 2 poly.

$$
y_{p}=A x^{2}+B x+C
$$

(d) $g(x)=3 x^{3}-5$

Degre 3 polpronicl

$$
y_{p}=A x^{3}+B x^{2}+C x+D
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(e) $g(x)=x e^{3 x} \quad$ Product of Degree 1 poly and $e^{3 x}$

$$
y_{p}=(A x+B) e^{3 x}
$$

(f) $g(x)=\cos (7 x)$ Sum of Cosine + Sine $7 x$

$$
y_{p}=A \cos (7 x)+B \sin (7 x)
$$

