October 3 Math 3260 sec. 57 Fall 2017

Section 4.2: Null \& Column Spaces, Linear Transformations

Definition: Let A be an $m \times n$ matrix. The null space of A, denoted by Nul A, is the set of all solutions of the homogeneous equation $A \mathbf{x}=\mathbf{0}$. That is

$$
\operatorname{Nul} A=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\}
$$

Theorem: For $m \times n$ matrix $A, \operatorname{Nul} A$ is a subspace of \mathbb{R}^{n}.

We saw that we can describe Nul A explicitly by finding a spanning set, and that this can be determined from the rref of A.

Column Space

Definition: The column space of an $m \times n$ matrix A, denoted $\operatorname{Col} A$, is the set of all linear combinations of the columns of A. If
$A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$, then

$$
\operatorname{CoI} A=\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\} .
$$

Note that this corresponds to the set of solutions \mathbf{b} of linear equations of the form $A \mathbf{x}=\mathbf{b}$! That is

$$
\operatorname{Col} A=\left\{\mathbf{b} \in \mathbb{R}^{m} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{n}\right\} .
$$

Theorem

The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{m}.
The columns \vec{a}_{i} are in \mathbb{R}^{n}
This was hinted at in the worksheet on

$$
\text { Sept. } 14 \text { oud problem \# } 5 \text { on exam } 1 \text {. }
$$

Corollary: $\operatorname{Col} A=\mathbb{R}^{m}$ if and only if the equation $A \mathbf{x}=\mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^{m}.

Example
Find a matrix A such that $W=\operatorname{Col} A$ where

$$
W=\left\{\left.\left[\begin{array}{c}
6 a-b \\
a+b \\
-7 a
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}
$$

Well look for a spanning set which provides columns for A. Consider \vec{u} in W

$$
\vec{u}=\left[\begin{array}{c}
6 a-b \\
a+b \\
-7 a
\end{array}\right]=a\left[\begin{array}{c}
6 \\
1 \\
-7
\end{array}\right]+b\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

So \vec{u} is in $\operatorname{span}\left\{\left[\begin{array}{c}6 \\ 1 \\ -7\end{array}\right],\left[\begin{array}{l}-1 \\ 1 \\ 0\end{array}\right]\right\}$
we can toke

$$
A=\left[\begin{array}{cc}
6 & -1 \\
1 & 1 \\
-7 & 0
\end{array}\right]
$$

Example

$$
A=\left[\begin{array}{cccc}
2 & 4 & -2 & 1 \\
-2 & -5 & 7 & 3 \\
3 & 7 & -8 & 6
\end{array}\right]
$$

(a) If $\mathrm{Col} A$ is a subspace of \mathbb{R}^{k}, what is k ?

$$
k=3 \text {, the columns are in } \mathbb{R}^{3}
$$

(b) If $\mathrm{Nul} A$ is a subspace of \mathbb{R}^{k}, what is k ?

$$
k=4 \quad A \vec{x} \text { is defined for } \vec{x} \text { in } \mathbb{R}^{4}
$$

Example Continued...

$$
A=\left[\begin{array}{cccc}
2 & 4 & -2 & 1 \\
-2 & -5 & 7 & 3 \\
3 & 7 & -8 & 6
\end{array}\right], \quad \text { and } \quad \mathbf{u}=\left[\begin{array}{c}
3 \\
-2 \\
-1 \\
0
\end{array}\right]
$$

(c) Is \mathbf{u} in Vul A ? Could \mathbf{u} be in $\mathrm{Col} A$?
\vec{u} cont b_{x} in $\operatorname{Col} A$ since $\operatorname{col} A$ is a subset of \mathbb{R}^{3} and \vec{u} is in \mathbb{R}^{4}. Compote $A_{\vec{u}}=\left[\begin{array}{c}0 \\ -3 \\ 3\end{array}\right] \neq \overrightarrow{0}$. \vec{u} is not in Vul A.

Example Continued...

$$
A=\left[\begin{array}{cccc}
2 & 4 & -2 & 1 \\
-2 & -5 & 7 & 3 \\
3 & 7 & -8 & 6
\end{array}\right], \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{c}
3 \\
-1 \\
3
\end{array}\right]
$$

(c) Is \mathbf{v} in $\mathrm{Col} A$? Could \mathbf{v} be in Vul A ?
$\stackrel{\rightharpoonup}{v}$ could not be in Nul A. In fact $A \vec{v}$ is nit defined.
If \vec{V} is in $\operatorname{Col} A$, then there is \vec{x} in $\mathbb{R}^{4} \operatorname{sech}$ that

$$
A \vec{x}=\vec{V} .
$$

we con row reduce the angmanted matrix

$$
\left[\begin{array}{ll}
A & \vec{v}
\end{array}\right]
$$

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccccc}
2 & 4 & -2 & 1 & 3 \\
-2 & -5 & 7 & 3 & -1 \\
3 & 7 & -8 & 6 & 3
\end{array}\right]}
\end{array}\right] \begin{aligned}
& \text { ref } \\
& \\
& {\left[\begin{array}{ccccc}
1 & 0 & 9 & 0 & 5 \\
0 & 1 & -5 & 0 & -30 / 17 \\
0 & 0 & 0 & 1 & 1 / 17
\end{array}\right] \quad \begin{array}{c}
\text { Ax } \\
\text { consistent } \\
\text { not a pivot column }
\end{array}}
\end{aligned}
$$

\vec{V} is in $\operatorname{col} A$.

Linear Transformation

Definition: Let V and W be vector spaces. A linear transformation $T: V \longrightarrow W$ is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W such that
(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for every \mathbf{u}, \mathbf{v} in V, and
(ii) $T(c \mathbf{u})=c T(\mathbf{u})$ for every \mathbf{u} in V and scalar c.

Example
Let $C^{1}(\mathbb{R})$ denote the set of all real valued functions that are differentiable and $C^{0}(\mathbb{R})$ the set of all continuous real valued functions. Note that differentiation is a linear transformation. That is

$$
D: C^{1}(\mathbb{R}) \longrightarrow C^{0}(\mathbb{R}), \quad D(f)=f^{\prime}
$$

satisfies the two conditions in the previous definition.
We know that $\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)$

$$
\text { ie } D(f+g)=f^{\prime}+g^{\prime}=D(f)+D(g)
$$

And $\frac{d}{d x}(c f(x))=c f^{\prime}(x)$ ie. $D(c f)=c f^{\prime}=c D(f)$ the Characterize the subset of $C^{1}(\mathbb{R})$ such that $D f=0 . \leftarrow$ this is function

This is the subset of constant functions $f(x)=k$.

Range and Kernel

Definition: The range of a linear transformation $T: V \longrightarrow W$ is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V. (The set of all images of elements of V.) Analog of a culuma space

Definition: The kernel of a linear transformation $T: V \longrightarrow W$ is the set of all vectors \mathbf{x} in V such that $T(\mathbf{x})=\mathbf{0}$. (The analog of the null space of a matrix.)

Theorem: Given linear transformation $T: V \longrightarrow W$, the range of T is a subspace of W and the kernel of T is a subspace of V.

Example
Consider $T: C^{1}(\mathbb{R}) \longrightarrow C^{0}(\mathbb{R})$ defined by

$$
T(f)=\frac{d f}{d x}+\alpha f(x), \quad \alpha \text { a fixed constant. }
$$

(a) Express the equation that a function y must satisfy if y is in the kernel of T.

If y is in the kernel of T, the $T(y)=0$.
This requires

$$
\frac{d y}{d x}+\alpha y=0
$$

Example
Consider $T: C^{1}(\mathbb{R}) \longrightarrow C^{0}(\mathbb{R})$ defined by

$$
T(f)=\frac{d f}{d x}+\alpha f(x), \quad \alpha \text { a fixed constant. }
$$

(b) Show that for any scalar $c, y=c e^{-\alpha x}$ is in the kernel of T.

$$
\begin{aligned}
& \text { If } y=c e^{-\alpha x} \text {, then } \frac{d y}{d x}=-\alpha c e^{-\alpha x} \text {. For such } y \\
& T(y)=\frac{d y}{d x}+\alpha y=-\alpha c e^{-\alpha x}+\alpha c e^{-\alpha x}=0
\end{aligned}
$$

so such y is in the kernel of T.

Section 4.3: Linearly Independent Sets and Bases

Definition: A set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in a vector space V is said to be linearly independent if the equation

$$
\begin{equation*}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0} \tag{1}
\end{equation*}
$$

has only the trivial solutions $c_{1}=c_{2}=\cdots=c_{p}=0$.
The set is linearly dependent if there exist a nontrivial solution (at least one of the weights c_{i} is nonzero). If there is a nontrivial solution c_{1}, \ldots, c_{p}, then equation (1) is called a linear dependence relation.

Theorem: The set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}, p \geq 2$ and $\mathbf{v}_{1} \neq \mathbf{0}$, is linearly dependent if and only if some \mathbf{v}_{j} for $j>1$ is a linear combination of the preceding vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}$.

Example
Determine if the set is linearly dependent or independent in \mathbb{P}_{2}.
(a) $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ where $\mathbf{p}_{1}=1, \mathbf{p}_{2}=2 t, \mathbf{p}_{3}=t-3$.

Consida $\quad c_{1} \vec{p}_{1}+c_{2} p_{2}+c_{3} \vec{p}_{3}=\overrightarrow{0}$
Note $\vec{p}_{3}=\frac{1}{2} \vec{p}_{2}-3 \vec{p}$. Hence $\left\{\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{0}\right\}$ is
linearly dependent. A linear dependence relation is

$$
3 \stackrel{\rightharpoonup}{p}_{1}-\frac{1}{2} \stackrel{\rightharpoonup}{p}_{2}+\stackrel{\rightharpoonup}{p}_{3}=\stackrel{\rightharpoonup}{0}
$$

(b) $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ where $\mathbf{p}_{1}=2, \mathbf{p}_{2}=t, \mathbf{p}_{3}=-t^{2}$.

Again, consider

$$
\begin{aligned}
& c_{1} \vec{p}_{1}+c_{2} \vec{p}_{2}+c_{3} \vec{p}_{3}=\overrightarrow{0} \\
& 2 c_{1}+c_{2} t-c_{3} t^{2}=0+0 t+0 t^{2}
\end{aligned}
$$

This must hold for all real (or complex) t.
So $c_{1}=c_{2}=c_{3}=0$.
This set is linearly independent.

Example
Show that every vector $\mathbf{p}=p_{0}+p_{1} t+p_{2} t^{2}$ in \mathbb{P}_{2} can be written as a linear combination of $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}^{1}$ where $\mathbf{p}_{1}=2, \mathbf{p}_{2}=t, \mathbf{p}_{3}=-t^{2}$.

If we take $a_{0}=\frac{1}{2} p_{0}, a_{1}=p_{1}$ and $a_{2}=-p_{2}$
then

$$
\begin{aligned}
a_{0} \vec{p}_{1}+a_{1} \vec{p}_{2} & +a_{2} \vec{p}_{3}=\frac{1}{2} p_{0}(2)+p_{1}(t)+\left(-p_{2}\right)\left(-t^{2}\right) \\
& =p_{0}+p_{1} t+p_{2} t^{2}
\end{aligned}
$$

${ }^{1}$ ie. this set spans \mathbb{P}_{2}

Definition (Basis)

Definition: Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right\}$ in V is a basis of H provided
(i) \mathcal{B} is linearly independent, and
(ii) $H=\operatorname{Span}(\mathcal{B})$.

We can think of a basis as a minimal spanning set. All of the information needed to construct vectors in H is contained in the basis, and none of this information is repeated.

Example

If A is an invertible $n \times n$ matrix, then we know ${ }^{2}$ that (1) the columns are linearly independent, and (2) the columns span \mathbb{R}^{n}. Use this to determine if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis for \mathbb{R}^{3} where

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
3 \\
0 \\
-6
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-4 \\
1 \\
7
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-2 \\
1 \\
5
\end{array}\right] .
$$

We can form the matrix $A=\left[\begin{array}{lll}\vec{v}_{1} & \dot{v}_{2} & \vec{v}_{3}\end{array}\right]$
On approad is to use the determinant

$$
A=\left[\begin{array}{ccc}
3 & -4 & -2 \\
0 & 1 & 1 \\
-6 & 7 & 5
\end{array}\right]
$$

$$
\begin{aligned}
\operatorname{det}(A) & =a_{11} C_{11}+a_{21} C_{21}+a_{31} C_{31} \\
& \left.=3\left|\begin{array}{cc}
1 & 1 \\
75
\end{array}\right|+0|-6| \begin{array}{cc}
-4 & -2 \\
1 & 1
\end{array} \right\rvert\, \\
& =3(5-7)-6(-4+2)=-6+12=6
\end{aligned}
$$

$\operatorname{det}(A) \neq 0$ is equivolent to the columns being (1) linearly indyendert and (2) spaniing \mathbb{R}^{3}. Nence $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is a hasis for \mathbb{R}^{3}.

Standard Basis in \mathbb{R}^{n}

The columns of the $n \times n$ identity matrix provide an obvious basis for \mathbb{R}^{n}. This is called the standard basis for \mathbb{R}^{n}. For example, the standard bases in \mathbb{R}^{2} and \mathbb{R}^{3} are

$$
\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}, \quad \text { and } \quad\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \quad \text { respectively. }
$$

Other Vector Spaces
Show that $\left\{1, t, t^{2}, t^{3}\right\}$ is a basis for $\mathbb{P}_{3}{ }^{3}$.
(1) Note

$$
\begin{aligned}
& c_{1} \cdot 1+c_{2} t+c_{7} t^{2}+c_{4} t^{3}=0+0 t+0 t^{2}+0 t^{3} \\
& \Rightarrow c_{1}=c_{2}=c_{3}=c_{4}=0
\end{aligned}
$$

The set is linearly indyendent.
(2) For $\vec{p}=p_{0}+p_{1} t+p_{2} t^{2}+p_{3} t^{3}$ in \mathbb{P}_{3}, we have \vec{p} as a linear coordination of the elements with corresponding coefficients p_{i}.
${ }^{3}$ The set $\left\{1, t, \ldots, t^{n}\right\}$ is called the standard basis for \mathbb{P}_{n},

Other Vector Spaces
Show that $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ is a basis for $M^{2 \times 2}$.

$$
\begin{aligned}
& \text { For } A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text { in } M^{2 \times 2} . \\
& A=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

The set spars $M^{2 \times 2}$.

If $A=0$ tho

$$
c_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+c_{2}\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c_{3}\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+c_{4}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

requires $\left[\begin{array}{ll}c_{1} & c_{2} \\ c_{3} & c_{4}\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, ix. $C_{1}=c_{2}=c_{3}=c_{4}=0$,

So the set is lineal, independent,

A Spanning Set Theorem
Example: Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ be vectors in a vector space V, and suppose that
(1) $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ and
(2) $\mathbf{v}_{3}=\mathbf{v}_{1}-2 \mathbf{v}_{2}$.

Show that $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
For \vec{u} in H,

$$
\begin{aligned}
\vec{u} & =c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3} \\
& =c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3}\left(\vec{v}_{1}-2 \vec{v}_{2}\right) \\
& =\left(c_{1}+c_{3}\right) \vec{v}_{1}+\left(c_{2}-2 c_{3}\right) \vec{v}_{2} \\
& =d_{1} \vec{v}_{1}+d_{2} \vec{v}_{2}
\end{aligned}
$$

when $d_{1}=c_{1}+c_{3}$ and $d_{2}=c_{2}-2 c_{3}$.

So \vec{u}_{h} is in $\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$.

Theorem:

Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ be a set in a vector space V and $H=\operatorname{Span}(S)$.
(a.) If one of the vectors in S, say \mathbf{v}_{k} is a linear combination of the other vectors in S, then the subset of S obtained by eliminating \mathbf{v}_{k} still spans H.
(b) If $H \neq\{\mathbf{0}\}$, then some subset of S is a basis for H.

If we start with a spanning set, we can eliminate duplication and arrive at a basis.

