October 3 Math 3260 sec. 57 Fall 2017

Section 4.2: Null & Column Spaces, Linear Transformations

Definition: Let *A* be an $m \times n$ matrix. The **null space** of *A*, denoted by Nul *A*, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. That is

$$\operatorname{Nul} A = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0} \}.$$

Theorem: For $m \times n$ matrix *A*, Nul *A* is a subspace of \mathbb{R}^n .

We saw that we can describe Nul *A* explicitly by finding a spanning set, and that this can be determined from the rref of *A*.

September 29, 2017

1/50

Column Space

Definition: The **column space** of an $m \times n$ matrix *A*, denoted Col *A*, is the set of all linear combinations of the columns of *A*. If $A = [\mathbf{a}_1 \quad \cdots \quad \mathbf{a}_n]$, then

 $ColA = Span\{a_1, \ldots, a_n\}.$

Note that this corresponds to the set of solutions **b** of linear equations of the form $A\mathbf{x} = \mathbf{b}$! That is

 $\operatorname{Col} A = \{ \mathbf{b} \in \mathbb{R}^m \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^n \}.$

Theorem

The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

Corollary: Col $A = \mathbb{R}^{n}$ if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for every **b** in \mathbb{R}^{m} .

Find a matrix A such that W = Col A where

$$W = \left\{ \left[egin{array}{c} 6a-b\ a+b\ -7a \end{array}
ight] \mid a,b\in\mathbb{R}
ight\}.$$

We'll look for a spenning set which provides
(olumns for A. Consider in W

$$\ddot{u} = \begin{bmatrix} 6a - b \\ a + b \\ -7a \end{bmatrix} = a \begin{bmatrix} 6 \\ 1 \\ -7 \end{bmatrix} + b \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

September 29, 2017 4 / 50

<ロト <回 > < 回 > < 回 > < 回 > … 回

S.
$$\tilde{u}$$
 is in Span $\left\{ \begin{bmatrix} 6\\1\\-7 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix} \right\}$

We can take
$$A = \begin{bmatrix} 6 & -1 \\ 1 & 1 \\ -7 & 0 \end{bmatrix}$$
.

$$A = \left[\begin{array}{rrrr} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{array} \right]$$

(a) If Col A is a subspace of \mathbb{R}^k , what is k?

k=3, the column as in R³

(b) If Nul A is a subspace of \mathbb{R}^k , what is k?

.

Example Continued...

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}, \text{ and } \mathbf{u} = \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$$

(c) Is **u** in Nul A? Could **u** be in Col A?

 \vec{u} confide in ColA since ColA is a subset of \mathbb{R}^3 and \vec{u} is in \mathbb{R}^4 . Compute $A\vec{u} = \begin{bmatrix} 0\\-3\\-3 \end{bmatrix} \neq \vec{o}$.

this not in NulA.

Example Continued...

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}, \text{ and } \mathbf{v} = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$$

(c) Is **v** in Col A? Could **v** be in Nul A?

V could not be in NulA. In fact AV isn't defined.
If
$$\vec{v}$$
 is in ColA, then there is \vec{x} in \mathbb{R}^{q} such
that $A\vec{x} = \vec{v}$.
We can row reduce the augmented matrix

[A ጚ]

$$\begin{bmatrix} 2 & 4 & -2 & | & 3 \\ -2 & -5 & 7 & 3 & -1 \\ 3 & 7 & -8 & 6 & 3 \end{bmatrix} \xrightarrow{\text{rref}}$$

$$\begin{bmatrix} 1 & 0 & 9 & 0 & S \\ 0 & 1 & -5 & 0 & -30 \\ 0 & 1 & -5 & 0 & -30 \\ 1 & 1 & 1 & 1 \end{bmatrix} \xrightarrow{\text{AX=V}} \xrightarrow{\text{IS}}$$

$$\begin{bmatrix} 1 & 0 & 9 & 0 & S \\ 0 & 1 & -5 & 0 & -30 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \xrightarrow{\text{Conversion}} \xrightarrow{\text{$$

Vis in ColA.

◆□> ◆圖> ◆理> ◆理> 三連

Linear Transformation

Definition: Let *V* and *W* be vector spaces. A linear transformation $T: V \longrightarrow W$ is a rule that assigns to each vector **x** in *V* a unique vector $T(\mathbf{x})$ in *W* such that

(i)
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 for every \mathbf{u}, \mathbf{v} in *V*, and
(ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for every \mathbf{u} in *V* and scalar *c*.

Let $C^1(\mathbb{R})$ denote the set of all real valued functions that are differentiable and $C^0(\mathbb{R})$ the set of all continuous real valued functions. Note that differentiation is a linear transformation. That is

$$D: C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R}), \quad D(f) = f'$$

satisfies the two conditions in the previous definition.

We know that
$$\frac{d}{dx}(f(x) + g(x)) = f'(x) + g'(x)$$

is $D(f+g) = f'+g' = D(f) + D(g)$

Characterize the subset of $C^1(\mathbb{R})$ such that Df = 0.4 this is function This is the subset of $C^1(\mathbb{R})$ such that Df = 0.4 this is the subset of $C^1(\mathbb{R})$ such that Df = 0.4 the subset of $C^1(\mathbb{R})$ And $\frac{1}{4x}(cf(x)) = cf'(x)$ is D(cf) = cf = cD(f)

This is the subsid of constant functions firs= k.

Range and Kernel

Definition: The range of a linear transformation $T: V \longrightarrow W$ is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V. (The set of all images of elements of V.) Analog of a column space.

Definition: The kernel of a linear transformation $T: V \longrightarrow W$ is the set of all vectors **x** in V such that $T(\mathbf{x}) = \mathbf{0}$. (The analog of the null space of a matrix.)

Theorem: Given linear transformation $T: V \longrightarrow W$, the range of T is a subspace of W and the kernel of T is a subspace of V.

> September 29, 2017

12/50

Consider $T: C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R})$ defined by

$$T(f) = \frac{df}{dx} + \alpha f(x), \quad \alpha \text{ a fixed constant.}$$

(a) Express the equation that a function y must satisfy if y is in the kernel of T. If y is in the kernel of T, the T(y) = 0This requires $\frac{dy}{dx} + qy = 0$.

Consider $T: C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R})$ defined by

$$T(f) = \frac{df}{dx} + \alpha f(x), \quad \alpha \text{ a fixed constant.}$$

(b) Show that for any scalar c, $y = ce^{-\alpha x}$ is in the kernel of T.

If
$$y = Ce^{-dx}$$
, then $\frac{dy}{dx} = -dCe^{-dx}$. For such y
 $T(y) = \frac{dy}{dx} + dy = -dCe^{-dx} + dCe^{-dx} = 0$
so such y is in the kernel of T.

September 29, 2017 14 / 50

Section 4.3: Linearly Independent Sets and Bases

Definition: A set of vectors $\{v_1, ..., v_p\}$ in a vector space *V* is said to be **linearly independent** if the equation

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0} \tag{1}$$

has only the trivial solutions $c_1 = c_2 = \cdots = c_p = 0$.

The set is **linearly dependent** if there exist a nontrivial solution (at least one of the weights c_i is nonzero). If there is a nontrivial solution c_1, \ldots, c_p , then equation (1) is called a **linear dependence relation**.

Theorem: The set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$, $p \ge 2$ and $\mathbf{v}_1 \neq \mathbf{0}$, is linearly dependent if and only if some \mathbf{v}_j for j > 1 is a linear combination of the preceding vectors $\mathbf{v}_1, \ldots, \mathbf{v}_{j-1}$.

Determine if the set is linearly dependent or independent in \mathbb{P}_2 .

(a) $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ where $\mathbf{p}_1 = 1, \mathbf{p}_2 = 2t, \mathbf{p}_3 = t - 3$. Consider $C_1 \vec{p}_1 + C_2 \vec{p}_2 + C_2 \vec{p}_2 = \vec{0}$ Note P3 = 272 - 37, Hence {7, 72, 73 is linearly dependent. A linear dependence relation is $3e^{-\frac{1}{2}e_{1}+e_{3}=0}$

(b) $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ where $\mathbf{p}_1 = 2$, $\mathbf{p}_2 = t$, $\mathbf{p}_3 = -t^2$. Again, consider c, p. + (, p. + C, p. = 0 $2c_1 + c_2 t - c_3 t^2 = 0 + 0t + 0t^2$ This must hold for all real (or complex) t. $S_{0} = C_{3} = C_{3} = 0$. This set is linearly independent.

Show that every vector $\mathbf{p} = p_0 + p_1 t + p_2 t^2$ in \mathbb{P}_2 can be written as a linear combination of $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}^1$ where $\mathbf{p}_1 = 2$, $\mathbf{p}_2 = t$, $\mathbf{p}_3 = -t^2$.

$$|f we take a_{0} = \frac{1}{2}P_{0}, a_{1} = P, a \ge a_{2} = -P_{2}$$

then

$$a_{0}\vec{p}_{1} + a_{1}\vec{p}_{2} + a_{2}\vec{p}_{3} = \frac{1}{2}P_{0}(2) + P_{1}(k) + (-P_{1})(-t^{2})$$

$$= P_{0} + P_{1}t + P_{2}t^{2}$$

¹i.e. this set *spans* \mathbb{P}_2

A D N A B N A B N A B N

Definition (Basis)

Definition: Let *H* be a subspace of a vector space *V*. An indexed set of vectors $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_p}$ in *V* is a **basis** of *H* provided

- (i) \mathcal{B} is linearly independent, and
- (ii) $H = \text{Span}(\mathcal{B})$.

We can think of a basis as a *minimal spanning set*. All of the *information* needed to construct vectors in *H* is contained in the basis, and none of this information is repeated.

イロト 不得 トイヨト イヨト ヨー ろくの

If *A* is an invertible $n \times n$ matrix, then we know² that (1) the columns are linearly independent, and (2) the columns span \mathbb{R}^n . Use this to determine if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for \mathbb{R}^3 where

$$\mathbf{v}_{1} = \begin{bmatrix} 3\\0\\-6 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} -4\\1\\7 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} -2\\1\\5 \end{bmatrix}$$

se can form the matrix $A = \begin{bmatrix} v_{1} & v_{2} & v_{3} \end{bmatrix}.$
On approad is to use the determinant
 $A = \begin{bmatrix} 3 & v_{1} & -2\\ -b & 7 & 5 \end{bmatrix}$

² from our large theorem on invertible matrices from section $2_3^{3} + 3_{$

$$det(A) = Q_{11} C_{11} + Q_{21} C_{21} + Q_{31} C_{31}$$

$$= 3 \begin{vmatrix} 11 \\ +6 \end{vmatrix} \begin{vmatrix} -6 \\ -4 \\ -2 \end{vmatrix}$$

$$= 3(5-7) - 6(-4+2) = -6+12 = 6$$

$$det(A) \neq 0 \quad \text{is equivalent to the columns being}$$

$$(1) \text{ Dinearly indegendent and (2) spanning } \mathbb{R}^{3}$$

$$Heng \quad \{\overline{V}_{1,1}, \overline{V}_{2,1}, \overline{V}_{2}\} \text{ is c basis for } \mathbb{R}^{3}$$

September 29, 2017 21 / 50

Standard Basis in \mathbb{R}^n

The columns of the $n \times n$ identity matrix provide an obvious basis for \mathbb{R}^n . This is called the **standard basis** for \mathbb{R}^n . For example, the standard bases in \mathbb{R}^2 and \mathbb{R}^3 are

$$\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}, \text{ and } \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\} \text{ respectively.}$$

< ロ > < 同 > < 回 > < 回 >

Other Vector Spaces

Show that $\{1, t, t^2, t^3\}$ is a basis for \mathbb{P}_3^3 .

³The set $\{1, t, ..., t^n\}$ is called the **standard basis** for $\mathbb{R}_{n} \leftarrow \mathbb{P} \leftarrow \mathbb{P} \leftarrow \mathbb{P}$ $\cong \mathbb{P} \leftarrow \mathbb{P}$ September 29, 2017 23/50

Other Vector Spaces

Show that
$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$
 is a basis for $M^{2\times 2}$.
For $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ in $\Pi^{2\times 2}$.
 $A = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 0 & d \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
The set Spars $\Pi^{2\times 2}$.

September 29, 2017 25 / 50

<ロ> <四> <四> <三</td>

$$\begin{aligned} \text{If } A=0 \quad \text{then} \\ C_{1} \left[\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + C_{2} \left[\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + C_{3} \left[\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + C_{4} \left[\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + C_{4} \left[\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + C_{4} \left[\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix} + C_{4} \left[\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix} + C_{4} \left[($$

So the set is linearly independent,

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

A Spanning Set Theorem

Example: Let \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 be vectors in a vector space *V*, and suppose that

(1) $H = \text{Span}\{v_1, v_2, v_3\}$ and (2) $\mathbf{v}_3 = \mathbf{v}_1 - 2\mathbf{v}_2$. Show that $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$. $\vec{u} = c_1 \vec{v}_1 + c_2 \vec{v}_1 + c_3 \vec{v}_3$ For Win H. $= (\overline{v}_1 + \overline{v}_2 \overline{v}_1 + \overline{c}_3 (\overline{v}_1 - \overline{2v}_2)$ $= (c_1 + c_2) \sqrt[3]{1}_{1} + (c_2 - 2c_3) \sqrt[3]{1}_{2}$ $z d \overline{y} + d \overline{y}$

when di= Ci+ C3 and d2 = C2 - Z (3.

So 2 is in Spar {Vi, V2}.

Theorem:

Let $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p}$ be a set in a vector space V and H = Span(S).

(a.) If one of the vectors in S, say \mathbf{v}_k is a linear combination of the other vectors in S, then the subset of S obtained by eliminating \mathbf{v}_{k} still spans H.

(b) If $H \neq \{\mathbf{0}\}$, then some subset of S is a basis for H.

If we start with a spanning set, we can eliminate *duplication* and arrive at a basis.

> イロト 不得 トイヨト イヨト ヨー ろくの September 29, 2017

29/50