October 3 Math 3260 sec. 57 Fall 2017

Section 4.2: Null & Column Spaces, Linear Transformations
Definition: Let A be an m x n matrix. The null space of A, denoted by
Nul A, is the set of all solutions of the homogeneous equation Ax = 0.

That is
NulA = {x e R" | Ax = 0}.

Theorem: For m x n matrix A, Nul A is a subspace of R".

We saw that we can describe Nul A explicitly by finding a spanning set,
and that this can be determined from the rref of A.
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Column Space

Definition: The column space of an m x n matrix A, denoted Col A,
is the set of all linear combinations of the columns of A. If
A=Ja; --- ap|,then

ColA = Span{ay,...,an}.

Note that this corresponds to the set of solutions b of linear equations
of the form Ax = b! That is

ColA={b e R™| b = Ax for some x € R"}.
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Theorem

The column space of an m x n matrix A is a subspace of R™.
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Corollary: Col A= R"™ if and only if the equation Ax = b has a solution
for every b in R™.
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Example
Find a matrix A such that W = Col A where

6a—b
W= a+b ||abeRy.
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Example
2 4 -2 1
A=| -2 -5 7 3
3 7 -8 6

(a) If Col A is a subspace of R, what is k?
3

k=3 W Glinr ax ®

(b) If Nul A is a subspace of R, what is k?
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Example Continued...
2 4 -2 1
A=| -2 -5 7 38|, and u=
3 7 -8 6

(¢) Is uin Nul A? Could u be in Col A?
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Example Continued...
2 4 -2 1 3
A=| -2 -5 7 38|, and v=| -1
3 7 -86 3

(c) Is vin Col A? Could v be in Nul A?
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Linear Transformation

Definition: Let V and W be vector spaces. A linear transformation

T :V — Wis arule that assigns to each vector x in V a unique
vector T(x) in W such that

(i) T(u+v)= T(u)+ T(v) for every u,vin V, and
(i) T(cu) =cT(u) for every uin V and scalar c.
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Example

Let C'(R) denote the set of all real valued functions that are

differentiable and C°(R) the set of all continuous real valued functions
Note that differentiation is a linear transformation. That is

D:C'(R) — C°(R), D(f)=f*
satisfies the two conditions in the previous definition.
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Characterize the subset of C'(R) such that Df = 0.5~ ¥ ¢
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Range and Kernel

Definition: The range of a linear transformation 7 : V — W is the
set of all vectors in W of the form T(x) for some x in V. (The set of all
images of elements of V.) P"“““é of a4 Coluan spece .

Definition: The kernel of a linear transformation 7 : V — W is the
set of all vectors x in V such that T(x) = 0. (The analog of the null
space of a matrix.)

Theorem: Given linear transformation T : V — W, the range of T is
a subspace of W and the kernel of T is a subspace of V.
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Example
Consider T : C'(R) — C°(R) defined by

df

T(f) = ax + af(x), « afixed constant.

(a) Express the equation that a function y must satisfy if y is in the
kernel of T.
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Example
Consider T : C'(R) — C°(R) defined by

T(f) = ax + af(x), « afixed constant.

(b) Show that for any scalar c, y e *X is in the kernel of T.

-dx A ~e{x
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Section 4.3: Linearly Independent Sets and Bases

Definition: A set of vectors {vy,...,Vp} in a vector space V is said to
be linearly independent if the equation

C1V1 + CoVo + -+ CpVp =0 (1)

has only the trivial solutions ¢y = ¢, = --- = ¢, = 0.

The set is linearly dependent if there exist a nontrivial solution (at
least one of the weights ¢; is nonzero). If there is a nontrivial solution
c1,...,Cp, then equation (1) is called a linear dependence relation.

Theorem: The set {vy,...,Vp}, p>2and vy # 0, is linearly
dependent if and only if some v; for j > 1 is a linear combination of the
preceding vectors vy, ..., V;_1.
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Example
Determine if the set is linearly dependent or independent in Ps.

(a) {p1,p2,P3} Where py =1, p2 = 2t, p3 =t — 3.
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(b) {p17p25 p3} where P1 = 2, P2 = t, ps = _t2.
P\‘Sa;lv‘ ) Consrdan c‘?\ + (,'(')l-f C?'{), : 6
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Example

Show that every vector p = po + p1t + pot2 in P, can be written as a
linear combination of {p1, P2, ps}! where p1 =2, po =t, ps = — 2.
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September 29, 2017 18/50



Definition (Basis)

Definition: Let H be a subspace of a vector space V. An indexed set
of vectors B = {by,...,bp} in V is a basis of H provided

(i) Bis linearly independent, and
(i) H =Span(B).

We can think of a basis as a minimal spanning set. All of the
information needed to construct vectors in H is contained in the basis,
and none of this information is repeated.
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Example

If Ais an invertible n x n matrix, then we know? that (1) the columns

are linearly independent, and (2) the columns span R”. Use this to

determine if {v{, Vs, v3} is a basis for R3 where

3 4 2
Vi = 0 , Vo= 1 , V3= 1
—6 7 5
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2from our large theorem on invertible matrices from section 2:3
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Standard Basis in R”

The columns of the n x nidentity matrix provide an obvious basis for
R". This is called the standard basis for R". For example, the

standard bases in R? and R3 are
0
,1 0 respectively.
1

(10 = ]3] ]

0
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Other Vector Spaces
Show that {1, 1, 2, 13} is a basis for P3°.

3
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Other Vector Spaces
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A Spanning Set Theorem

Example: Let v4, V5, v3 be vectors in a vector space V, and suppose

that
(1) H =Span{vy,vs2,v3} and
(2) V3 = V1 — 2Vs.
Show that H =Span{v{,va}.
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Theorem:

Let S = {vy,Vvo,...,Vp} be a setin a vector space V and H =Span(S).
(a.) If one of the vectors in S, say v is a linear combination of the
other vectors in S, then the subset of S obtained by eliminating v still
spans H.

(b) If H # {0}, then some subset of S is a basis for H.

If we start with a spanning set, we can eliminate duplication and arrive
at a basis.
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