October 3 Math 3260 sec. 58 Fall 2017

Section 4.2: Null & Column Spaces, Linear Transformations

Definition: Let *A* be an $m \times n$ matrix. The **null space** of *A*, denoted by Nul *A*, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. That is

$$\operatorname{Nul} A = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0} \}.$$

Theorem: For $m \times n$ matrix *A*, Nul *A* is a subspace of \mathbb{R}^n .

We saw that we can describe Nul *A* explicitly by finding a spanning set, and that this can be determined from the rref of *A*.

September 29, 2017

Column Space

Definition: The **column space** of an $m \times n$ matrix *A*, denoted Col *A*, is the set of all linear combinations of the columns of *A*. If $A = [\mathbf{a}_1 \quad \cdots \quad \mathbf{a}_n]$, then

 $ColA = Span\{a_1, \ldots, a_n\}.$

Note that this corresponds to the set of solutions **b** of linear equations of the form $A\mathbf{x} = \mathbf{b}$! That is

 $\operatorname{Col} A = \{ \mathbf{b} \in \mathbb{R}^m \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^n \}.$

Theorem

The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m . That Col A is a subset of \mathbb{R}^n follows from the columner bieing in \mathbb{R}^n . This was also hinked at in the work sheet from Sept. 14 and problem # 5 from example.

Corollary: Col $A = \mathbb{R}^{n}$ if and only if the equation $A\mathbf{x} = \mathbf{b}$ has a solution for every **b** in \mathbb{R}^{m} .

September 29, 2017

Find a matrix A such that W = Col A where

$$W=\left\{ \left[egin{array}{c} 6a-b\ a+b\ -7a \end{array}
ight]\mid a,b\in \mathbb{R}
ight\} .$$

For thin W, for some real number and b $\tilde{u} = \begin{bmatrix} 6a & -b \\ a+b \\ -7a \end{bmatrix} = a \begin{bmatrix} 6 \\ 1 \\ -7 \end{bmatrix} + b \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ so \tilde{u} is in Span $\left\{ \begin{bmatrix} 6 \\ -7 \\ -7 \end{bmatrix}, \begin{bmatrix} 7 \\ 1 \\ 0 \end{bmatrix} \right\}$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We can take

$$A = \begin{bmatrix} 6 & -1 \\ 1 & 1 \\ -7 & 0 \end{bmatrix} -$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

$$A = \left[\begin{array}{rrrr} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{array} \right]$$

(a) If Col A is a subspace of \mathbb{R}^k , what is k?

K=3

(b) If Nul A is a subspace of \mathbb{R}^k , what is k?

September 29, 2017

Example Continued...

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}, \text{ and } \mathbf{u} = \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$$

(c) Is **u** in Nul A? Could **u** be in Col A?

To convol be in ColA since this in
$$\mathbb{R}^n$$
 and ColA is
a subspace of \mathbb{R}^3 . We can compute Ath.
Ath = $\begin{bmatrix} 0\\-3\\3 \end{bmatrix} \neq \vec{0}$. It is not in NulA.

September 29, 2017 7 / 50

э

イロト イポト イヨト イヨト

Example Continued...

$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}, \text{ and } \mathbf{v} = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$$

(c) Is **v** in Col A? Could **v** be in Nul A?

September 29, 2017 8 / 50

э

イロト イヨト イヨト イヨト

$$\begin{bmatrix} 2 & 4 & -2 & 1 & 3 \\ -2 & -5 & 7 & 3 & -1 \\ 3 & 7 & -8 & 6 & 3 \end{bmatrix} \xrightarrow{rref}$$

$$\begin{bmatrix} 1 & 6 & 9 & 0 & 5 \\ 0 & 1 & -5 & 0 & -30 \\ 0 & 1 & -5 & 0 & -30 \\ 0 & 1 & -5 & 0 & 1 \end{bmatrix} \xrightarrow{rs} A_{X} = \overrightarrow{V}$$

$$\xrightarrow{rv}_{ref} a pivot \qquad \text{consistent}$$

Vis in ColA.

▲ □ ▶ ▲ ⓓ ▶ ▲ ≧ ▶ ▲ ≧ ▶ ▲ ≧ ▶ ④ Q @
 September 29, 2017 9 / 50

Linear Transformation

Definition: Let *V* and *W* be vector spaces. A linear transformation $T: V \longrightarrow W$ is a rule that assigns to each vector **x** in *V* a unique vector $T(\mathbf{x})$ in *W* such that

(i)
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 for every \mathbf{u}, \mathbf{v} in *V*, and
(ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for every \mathbf{u} in *V* and scalar *c*.

Let $C^1(\mathbb{R})$ denote the set of all real valued functions that are differentiable and $C^0(\mathbb{R})$ the set of all continuous real valued functions. Note that differentiation is a linear transformation. That is

$$D: C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R}), \quad D(f) = f'$$

satisfies the two conditions in the previous definition.

For
$$f_{1}g_{1n} C'(R)$$
, recall $\frac{d}{dx} (f(x) + g(x)) = f'(x) + g'(x)$
That is $D(f_{1}g_{2}) = f'_{1}g' = D(f) + D(g)$
Similarly $\frac{d}{dx} (cf(x)) = cf'(x)$, hence $D(cf) = cf' = cD(f)$.
Characterize the subset of $C^{1}(R)$ such that $Df = 0$. The set of constant functions
This is the set of constant functions
 $f(x) = k$ for all x .

Range and Kernel

Definition: The range of a linear transformation $T: V \longrightarrow W$ is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V. (The set of all images of elements of V.) For the matrix product cose Ax, this is colA

Definition: The kernel of a linear transformation $T: V \longrightarrow W$ is the set of all vectors **x** in V such that $T(\mathbf{x}) = \mathbf{0}$. (The analog of the null space of a matrix.)

Theorem: Given linear transformation $T: V \longrightarrow W$, the range of T is a subspace of W and the kernel of T is a subspace of V.

> イロト 不得 トイヨト イヨト ヨー ろくの September 29, 2017

Consider $T: C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R})$ defined by

$$T(f) = \frac{df}{dx} + \alpha f(x), \quad \alpha \text{ a fixed constant.}$$

< □ ▶ < ⊡ ▶ < ≣ ▶ < ≣ ▶ < ≡ ▶ ≡
 September 29, 2017

13/50

(a) Express the equation that a function y must satisfy if y is in the kernel of T.

To be in the kernel,
$$T(y) = 0$$
. But
 $T(y) = \frac{dy}{dx} + dy$ so y would satisfy
 $\frac{dy}{dx} + dy = 0$

Consider $T: C^1(\mathbb{R}) \longrightarrow C^0(\mathbb{R})$ defined by

$$T(f) = \frac{df}{dx} + \alpha f(x), \quad \alpha \text{ a fixed constant.}$$

(b) Show that for any scalar c, $y = ce^{-\alpha x}$ is in the kernel of T.

For
$$y=ce^{-dx}$$
, $\frac{dy}{dx}=-dce^{-dx}$. Then
 $\frac{dy}{dx}+dy=-dce^{-dx}+dce^{-dx}=0$ for all X.
So y is in the hernel of T.

Section 4.3: Linearly Independent Sets and Bases

Definition: A set of vectors $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ in a vector space *V* is said to be **linearly independent** if the equation

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0} \tag{1}$$

has only the trivial solutions $c_1 = c_2 = \cdots = c_p = 0$.

The set is **linearly dependent** if there exist a nontrivial solution (at least one of the weights c_i is nonzero). If there is a nontrivial solution c_1, \ldots, c_p , then equation (1) is called a **linear dependence relation**.

Theorem: The set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$, $p \ge 2$ and $\mathbf{v}_1 \neq \mathbf{0}$, is linearly dependent if and only if some \mathbf{v}_j for j > 1 is a linear combination of the preceding vectors $\mathbf{v}_1, \ldots, \mathbf{v}_{j-1}$.

Determine if the set is linearly dependent or independent in \mathbb{P}_2 .

(a) $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ where $\mathbf{p}_1 = 1, \mathbf{p}_2 = 2t, \mathbf{p}_3 = t - 3$.

Note $\vec{p}_3 = \frac{1}{2} \vec{p}_2 - 3 \vec{p}_1 = \frac{1}{2} (2t) - 3(1) = t - 3$ The set is linearly dependent.

> September 29, 2017

(b) $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ where $\mathbf{p}_1 = 2, \ \mathbf{p}_2 = t, \ \mathbf{p}_3 = -t^2$.

Conside
$$C_1 \vec{p}_1 + (z \vec{p}_2 + C_3 \vec{p}_3 = \vec{0} = 0 + 0 + 0 + 0 t^2$$

 $2C_1 + C_2 t - (z t^2 = 0 + 0 + 0 t^2)$
This requires $C_1 = C_2 = (z = 0)$
The set is linearly independent.

September 29, 2017 17 / 50

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Show that every vector $\mathbf{p} = p_0 + p_1 t + p_2 t^2$ in \mathbb{P}_2 can be written as a linear combination of $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}^1$ where $\mathbf{p}_1 = 2$, $\mathbf{p}_2 = t$, $\mathbf{p}_3 = -t^2$.

Letting
$$a_0 = \frac{1}{2}P_0$$
, $a_1 = P_1$ and $a_2 = -P_2$, then
 $a_0 \vec{P}_1 + c_1 \vec{P}_2 + a_2 \vec{P}_3 = \frac{1}{2}P_0 \cdot (2) + P_1 t + (-P_1) (-t^2)$
 $= P_0 + P_1 t + P_2 t^2$.
So $\vec{P}_1 is$ in Span $\{\vec{P}_1, \vec{P}_2, \vec{P}_3\}$.

¹i.e. this set *spans* \mathbb{P}_2

Definition (Basis)

Definition: Let *H* be a subspace of a vector space *V*. An indexed set of vectors $\mathcal{B} = {\mathbf{b}_1, ..., \mathbf{b}_p}$ in *V* is a **basis** of *H* provided

- (i) \mathcal{B} is linearly independent, and
- (ii) $H = \text{Span}(\mathcal{B})$.

We can think of a basis as a *minimal spanning set*. All of the *information* needed to construct vectors in *H* is contained in the basis, and none of this information is repeated.

イロト 不得 トイヨト イヨト ヨー ろくの

If *A* is an invertible $n \times n$ matrix, then we know² that (1) the columns are linearly independent, and (2) the columns span \mathbb{R}^n . Use this to determine if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for \mathbb{R}^3 where

$$\mathbf{v}_{1} = \begin{bmatrix} 3\\0\\-6 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} -4\\1\\7 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} -2\\1\\5 \end{bmatrix}.$$
we can form a 3x3 matrix $A = \begin{bmatrix} v_{1} & v_{2} & v_{7} \end{bmatrix}.$
Use on use det(A) to check if this set is a basis.

$$A = \begin{bmatrix} 3 & -4 & -2 \\ 0 & 1 & 1 \\ -6 & 7 & 5 \end{bmatrix}.$$

$$dt (A) = Q_{11} C_{11} + Q_{21} C_{11} + Q_{31} C_{31}$$

$$= 3 \begin{vmatrix} 1 & 1 \\ 7 & 5 \end{vmatrix} + 0 \cdot \left| \dots \right| + (-6) \begin{vmatrix} -9 & -2 \\ 1 & 1 \end{vmatrix}$$

$$= 3(5-7) - 6(9+2) = 6 \neq 0.$$
So the columns one fin, independent and spon \mathbb{R}^{3} ,
$$\{\overline{v}_{1}, \overline{v}_{2}, \overline{v}_{3}\} \text{ is } c \text{ basis for } \mathbb{R}^{2}.$$

Standard Basis in \mathbb{R}^n

The columns of the $n \times n$ identity matrix provide an obvious basis for \mathbb{R}^n . This is called the **standard basis** for \mathbb{R}^n . For example, the standard bases in \mathbb{R}^2 and \mathbb{R}^3 are

$$\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}, \text{ and } \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\} \text{ respectively.}$$

< ロ > < 同 > < 回 > < 回 >

Other Vector Spaces

Show that $\{1, t, t^2, t^3\}$ is a basis for \mathbb{P}_3^3 .

If
$$\beta$$
 is in \mathbb{P}_3 , $\beta = p_0 + p_1 t + p_2 t^2 + p_3 t^3$, β is
a linear combo of $\{1, t, t^2, t^3\}$. Considering
 $C_1 + C_2 t + C_3 t^2 + C_4 t^3 = \delta = 0 + 0t + \delta t^2 + 0t^3$,
requires $C_1 = 0$ for $i = 1, \dots, 4$. It is a
linearly independent sponning set, hence a basis.

³The set $\{1, t, \dots, t^n\}$ is called the **standard basis** for $\mathbb{R}_n \to \mathbb{C}$ and $\mathbb{R} \to \mathbb{C}$ is called the standard basis for \mathbb{R} . September 29, 2017

Other Vector Spaces

Show that
$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$
 is a basis for
 $M^{2 \times 2}$.
For $A = \begin{bmatrix} a & b \\ c & b \end{bmatrix}$ in $M^{2 \times 2}$.
 $A = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.
The set Spens $M^{2 \times 2}$.
If $c_1 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c_3 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + C_4 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$,

<ロ> <四> <四> <三</td>

$$dL_{n} \qquad \begin{bmatrix} C_{1} & C_{2} \\ C_{3} & C_{4} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

linearly independent. The set is a basis

A Spanning Set Theorem

Example: Let \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 be vectors in a vector space *V*, and suppose that

(1)
$$H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$$
 and
(2) $\mathbf{v}_3 = \mathbf{v}_1 - 2\mathbf{v}_2$.
Show that $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$.
For \mathcal{K}_{im} Spon $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$, $\vec{u} = c_1\vec{v}_1 + c_2\vec{v}_2 + c_3\vec{v}_3$
Then $\vec{u} = c_1\vec{v}_1 + c_2\vec{v}_2 + c_3(\vec{v}_1 - 2\vec{v}_2)$
 $= (c_1 + (c_3)\vec{v}_1 + (c_2 - 2c_3)\vec{v}_2 = d_1\vec{v}_1 + d_2\vec{v}_2$.
Where $d_1 = (1 + c_3)$, $d_2 = c_2 - 2c_3$. Hence $\vec{u} = (i + i)$ in
Span $\{\vec{v}_1, \vec{v}_2\}$.

Theorem:

Let $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p}$ be a set in a vector space V and H = Span(S).

(a.) If one of the vectors in S, say \mathbf{v}_k is a linear combination of the other vectors in S, then the subset of S obtained by eliminating \mathbf{v}_{k} still spans H.

(b) If $H \neq \{\mathbf{0}\}$, then some subset of S is a basis for H.

If we start with a spanning set, we can eliminate *duplication* and arrive at a basis.

> イロト 不得 トイヨト イヨト ヨー ろくの September 29, 2017

Column Space

Find a basis for the column space matrix *B* that is in reduced row echelon form

$$B = \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ \hline b_{1} & b_{2} & b_{3} & b_{4} & b_{5} \end{bmatrix}.$$
Note $b_{2}^{2} (4b_{1}), b_{3}^{2} (2b_{1} - b_{3})$

$$B_{1} = b_{2}^{2} (4b_{1}), b_{3}^{2} (2b_{1} - b_{3})$$

$$B_{1} = b_{3}^{2} (4b_{1} - b_{3}), b_{3}^{2} (4b_{1} - b_{3})$$

$$B_{1} = b_{3}^{2} (4b_{1} - b_{3}), b_{3}^{2} (4b_{1} - b_{3})$$

$$B_{1} = b_{3}^{2} (4b_{1} - b_{3}), b_{3}^{2} (4b_{1} - b_{3})$$

$$B_{1} = b_{3}^{2} (4b_{1} - b_{3}), b_{3}^{2} (4b_{1} - b_{3}), b_{3}^{2} (4b_{1} - b_{3}), b_{3}^{2} (4b_{1} - b_{3})$$

$$B_{1} = b_{3}^{2} (4b_{1} - b_{3}), b_{4}^{2} (4b_{1} - b_{3}), b_{5}^{2} (4b_{1} - b_{3}), b_{6}^{2} (4b_{$$

э