October 5 MATH 1113 sec. 51 Fall 2018

Section 5.1: Inverse Relations and Inverse Functions

Definition: Let *S* be a relation with domain *D* and range *R*. The inverse relation S^{-1} is the relation having domain *R* and range *D* defined by

 $(x,y)\in S^{-1}$ provided $(y,x)\in S$.

Definition: A function *f* is **one to one** if different inputs have different outputs. That is, *f* is one to one provided

 $a \neq b$ implies $f(a) \neq f(b)$.

Equivalently, f is a one to one function provided

f(a) = f(b) implies a = b.

October 5, 2018 1 / 28

Inverse Function

Theorem: If *f* is a one to one function with domain *D* and range *R*, then its inverse f^{-1} is a function with domain *R* and range *D*. Moreover, the inverse function is defined by

$$f^{-1}(x) = y$$
 if and only if $f(y) = x$.

Characteristic Compositions:

If *f* is a one to one function with domain *D*, range *R*, and with inverse function f^{-1} , then

October 5, 2018

2/28

• for each x in D,
$$(f^{-1} \circ f)(x) = x$$
, and

• for each x in R,
$$(f \circ f^{-1})(x) = x$$
.

Example:
$$f(x) = \sqrt[3]{x-1}$$

f is a one to one function. Verify that $f^{-1}(x) = x^3 + 1$ by showing that $(f^{-1} \circ f)(x) = x$ and $(f \circ f^{-1})(x) = x$.

$$(f^{-1} \circ f)(x) = f^{-1}(f(x))$$

= $(3\sqrt{x-1})^{3} + 1$
= $(x-1+1)$
= x

 $(t \circ t)$ (x) = t(t)

 $= f(x^3 + 1)$

 $f(x): \sqrt[3]{x-1}$

 $= 3(x^{3}+1) - 1$

= 3 X³+1-1

= 3 X2

= χ

October 5, 2018 4 / 28

<ロ> <四> <四> <四> <四> <四</p>

Question

The function $f(x) = \frac{1}{x+1}$ is one to one. Which of the following is its inverse function? (Hint: Check compositions $(f^{-1} \circ f)(x)$.)

(a)
$$f^{-1}(x) = x + 1$$
 $(f^{-1} \circ f^{-1})(x) = f^{-1}(f_{1(x)}) = f^{-1}(\frac{1}{x+1})$

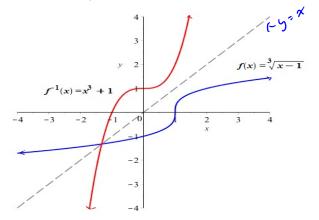
(b)
$$f^{-1}(x) = \frac{1-x}{x}$$
 $\frac{1-\frac{1}{x+1}}{\frac{1}{x+1}} \left(\frac{x+1}{x+1}\right)$

(c)
$$f^{-1}(x) = \frac{x}{x+1}$$
 = $\frac{x+1-1}{1}$ = $\frac{x}{1} = x$

イロト 不得 トイヨト イヨト 二日

Graphs

If (a, b) is a point on the graph of a function, then (b, a) is a point on the graph of its inverse. So the graph of f^{-1} is obtained by reflecting the graph of f in the line y = x.



Horizontal Line Test

The graph of a function must pass the vertical line test. We can ask what sort of curve would result in a vertical line upon being reflected in the line y = x.

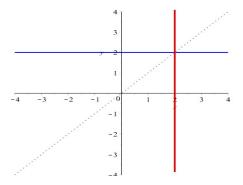


Figure: When a horizontal line is reflected in y = x, the result is a vertical line. So if two points of a graph are on one horizontal line, those points will be on the same vertical line when reflected.

Horizontal Line Test

Theorem: The function *f* is one to one if and only if its graph y = f(x) interescts every horizontal line at most one times.

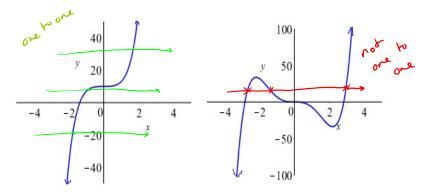
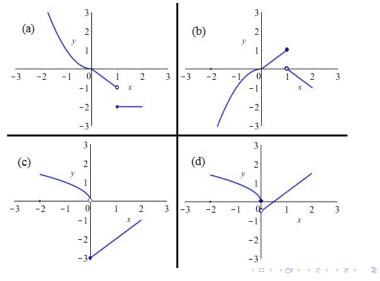


Figure: Left: A one to one function. Right: A function that is not one to one.

Question

Which plot shows a function whose inverse relation is a function?



Identifying an Inverse Function Formula

Given a one to one function f(x), we can find¹ a formula for its inverse f^{-1} by the following steps

(1) Write y = f(x).

(2) Interchange the variable names x and y.

(3) Solve for y using any necessary algebra.

(4) Replace y with $f^{-1}(x)$.

Example

Find
$$f^{-1}$$
 given $f(x) = \frac{2x+1}{x+3}$. Verify that $(f^{-1} \circ f)(x) = x$.

$$y = \frac{2x+1}{x+3}$$
Swep near $x \leftrightarrow y$

$$x = \frac{2y+1}{y+3}$$
Solve for y

$$x(y+3) = 2y+1$$

$$xy + 3x = 2y + 1$$

$$xy - 2y = 1 - 3x$$

October 5, 2018 11 / 28

(x-2)y = 1-3x This "y" defres f $y = \frac{1-3x}{x-2}$ $f(x) = \frac{2x+1}{x+3}$ $f'(x) = \frac{1-3x}{x-2}$ Chech (f'of)(x) f'(f(x)) $= f''\left(\frac{2x+1}{x+3}\right)$ $= \underbrace{1 - 3\left(\frac{2x+1}{x+2}\right)}_{\left(\frac{2x+1}{x+3}\right) - 2}$ $\left(\frac{x+3}{x}\right)$ October 5, 2018

12/28

$$= \frac{x+3 - 3(2x+1)}{2x+1 - 2(x+3)}$$

$$\frac{x+3-6x-3}{2x+1-2x-6}$$

= ×

as expected

October 5, 2018 13 / 28

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

Restricting the Domain

Sometimes we wish to define an inverse function when a given function is not, in general, one to one. This can be done by restricting the domain of the original function.

The classic example would be the square root. Note $f(x) = x^2$ is not one to one if its domain is $(-\infty, \infty)$. However, if we consider the function $F(x) = x^2$ for $0 \le x < \infty$, this function is one to one with inverse $F^{-1}(x) = \sqrt{x}$.

Restricting the Domain

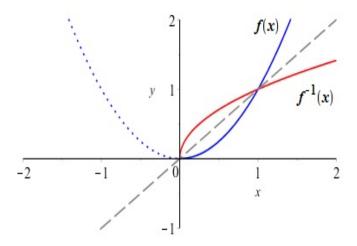


Figure: If the domain of $y = x^2$ is restricted to $[0, \infty)$, the graph passes the horizontal line test.

October 5, 2018

15/28