October 5 MATH 1113 sec. 51 Fall 2018

Section 5.1: Inverse Relations and Inverse Functions

Definition: Let S be a relation with domain D and range R. The inverse relation S^{-1} is the relation having domain R and range D defined by

$$
(x, y) \in S^{-1} \quad \text { provided } \quad(y, x) \in S
$$

Definition: A function f is one to one if different inputs have different outputs. That is, f is one to one provided

$$
a \neq b \text { implies } f(a) \neq f(b) .
$$

Equivalently, f is a one to one function provided

$$
f(a)=f(b) \quad \text { implies } \quad a=b .
$$

Inverse Function

Theorem: If f is a one to one function with domain D and range R, then its inverse f^{-1} is a function with domain R and range D.
Moreover, the inverse function is defined by

$$
f^{-1}(x)=y \text { if and only if } f(y)=x .
$$

Characteristic Compositions:

If f is a one to one function with domain D, range R, and with inverse function f^{-1}, then

- for each x in $D,\left(f^{-1} \circ f\right)(x)=x$, and
- for each x in $R,\left(f \circ f^{-1}\right)(x)=x$.

Example: $f(x)=\sqrt[3]{x-1}$
f is a one to one function. Verify that $f^{-1}(x)=x^{3}+1$ by showing that $\left(f^{-1} \circ f\right)(x)=x$ and $\left(f \circ f^{-1}\right)(x)=x$.

$$
\begin{aligned}
\left(f^{-1} \circ f\right)(x) & =f^{-1}(f(x)) \\
& =f^{-1}(\sqrt[3]{x-1}) \\
& =(\sqrt[3]{x-1})^{3}+1 \\
& =x-1+1 \\
& =x
\end{aligned}
$$

$$
\begin{aligned}
\left(f \circ f^{-1}\right)(x) & =f\left(f^{-1}(x)\right) \\
& =f\left(x^{3}+1\right) \quad f(x)=\sqrt[3]{x-1} \\
& =\sqrt[3]{\left(x^{3}+1\right)-1} \\
& =\sqrt[3]{x^{3}+1-1} \\
& =\sqrt[3]{x^{2}} \\
& =x
\end{aligned}
$$

Question

The function $f(x)=\frac{1}{x+1}$ is one to one. Which of the following is its inverse function? (Hint: Check compositions $\left(f^{-1} \circ f\right)(x)$.)
(a) $f^{-1}(x)=x+1$

$$
\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=f^{-1}\left(\frac{1}{x+1}\right)
$$

(b) $f^{-1}(x)=\frac{1-x}{x}$ $=\frac{1-\frac{1}{x+1}}{\frac{1}{x+1}}\left(\frac{x+1}{x+1}\right)$
(c) $f^{-1}(x)=\frac{x}{x+1}$
$=\frac{x+1-1}{1}=\frac{x}{1}=x$

Graphs

If (a, b) is a point on the graph of a function, then (b, a) is a point on the graph of its inverse. So the graph of f^{-1} is obtained by reflecting the graph of f in the line $y=x$.

Horizontal Line Test

The graph of a function must pass the vertical line test. We can ask what sort of curve would result in a vertical line upon being reflected in the line $y=x$.

Figure: When a horizontal line is reflected in $y=x$, the result is a vertical line. So if two points of a graph are on one horizontal line, those points will be on the same vertical line when reflected.

Horizontal Line Test

Theorem: The function f is one to one if and only if its graph $y=f(x)$ interescts every horizontal line at most one times.

Figure: Left: A one to one function. Right: A function that is not one to one.

Question

Which plot shows a function whose inverse relation is a function?

Identifying an Inverse Function Formula

Given a one to one function $f(x)$, we can find ${ }^{1}$ a formula for its inverse f^{-1} by the following steps
(1) Write $y=f(x)$.
(2) Interchange the variable names x and y.
(3) Solve for y using any necessary algebra.
(4) Replace y with $f^{-1}(x)$.
${ }^{1}$ It may be that the algebra becomes intractable. We may not have a nice formula for the inverse.

Example
Find f^{-1} given $f(x)=\frac{2 x+1}{x+3}$. Verify that $\left(f^{-1} \circ f\right)(x)=x$.

$$
\begin{aligned}
& y=\frac{2 x+1}{x+3} \quad \text { swap names } \quad x \leftrightarrow y \\
& x=\frac{2 y+1}{y+3} \quad \text { solve for } y \\
& x(y+3)=2 y+1 \\
& x y+3 x=2 y+1 \\
& x y-2 y=1-3 x
\end{aligned}
$$

$$
\begin{aligned}
(x-2) y & =1-3 x \\
y & =\frac{1-3 x}{x-2}
\end{aligned} \begin{aligned}
f^{-1}(x)=\frac{1-3 x}{x-2} & f(x)=\frac{2 x+1}{x+3}
\end{aligned}
$$

Check $\left(f^{-1} \circ f\right)(x)$

$$
\begin{aligned}
& =f^{-1}(f(x)) \\
& =f^{-1}\left(\frac{2 x+1}{x+3}\right) \\
& =\frac{1-3\left(\frac{2 x+1}{x+3}\right)}{\left(\frac{2 x+1}{x+3}\right)-2} \cdot\left(\frac{x+3}{x+3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x+3-3(2 x+1)}{2 x+1-2(x+3)} \\
& =\frac{x+3-6 x-3}{2 x+1-2 x-6} \\
& =\frac{-5 x}{-5} \\
& =x
\end{aligned}
$$

Restricting the Domain

Sometimes we wish to define an inverse function when a given function is not, in general, one to one. This can be done by restricting the domain of the original function.

The classic example would be the square root. Note $f(x)=x^{2}$ is not one to one if its domain is $(-\infty, \infty)$. However, if we consider the function $F(x)=x^{2}$ for $0 \leq x<\infty$, this function is one to one with inverse $F^{-1}(x)=\sqrt{x}$.

Restricting the Domain

Figure: If the domain of $y=x^{2}$ is restricted to $[0, \infty)$, the graph passes the horizontal line test.

