Oct. 5 Math 1190 sec. 52 Fall 2016
Section 3.3: Derivatives of Logarithmic Functions
Properties of logarithms can be used to simplify expressions characterized by products, quotients and powers.

Illustrative Example: Evaluate $\frac{d}{d x} \ln \left(\frac{x^{2 / 3}(x+3)^{5}}{\sin ^{-1} x}\right)$
well use \log properties first.

$$
\begin{aligned}
\ln \left(\frac{x^{2 / 3}(x+3)^{5}}{\sin ^{-1} x}\right) & =\ln \left(x^{2 / 3}(x+3)^{5}\right)-\ln \left(\sin ^{-1} x\right) \\
& =\ln x^{2 / 3}+\ln (x+3)^{5}-\ln \left(\sin ^{-1} x\right)
\end{aligned}
$$

$$
=\frac{2}{3} \ln x+5 \ln (x+3)-\ln \left(\sin ^{-1} x\right)
$$

* Recall $\sin ^{-1} x \neq(\sin x)^{-1}$ its $\arcsin (x)$

Now we tale the derivative

$$
\begin{aligned}
\frac{d}{d x} \ln \left(\frac{x^{2 / 3}(x+3)^{5}}{\sin ^{-1} x}\right) & =\frac{d}{d x}\left(\frac{2}{3} \ln x+5 \ln (x+3)-\ln \left(\sin ^{-1} x\right)\right) \\
& =\frac{2}{3} \frac{1}{x}+5 \frac{1}{x+3}-\frac{\frac{1}{\sqrt{1-x^{2}}}}{\sin ^{-1} x} \\
& =\frac{2}{3 x}+\frac{5}{x+3}-\frac{1}{\sin ^{-1} x \sqrt{1-x^{2}}}
\end{aligned}
$$

$$
\frac{d}{d x} \ln f(x)=\frac{f^{\prime}(x)}{f(x)}
$$

Question
Evaluate the derivative. Use properties of logs to simplify the process.

$$
\frac{d}{d x} \ln \left(\frac{\sqrt{x}}{\tan x+1}\right)
$$

Which expression is the correct derivative
(a) $\frac{1}{2 x}-\frac{\sec ^{2} x}{\tan x}$

$$
\begin{aligned}
\ln \left(\frac{\sqrt{x}}{\operatorname{tn} x+1}\right) & =\ln \sqrt{x}-\ln (\tan x+1) \\
& =\frac{1}{2} \ln x-\ln (\tan x+1)
\end{aligned}
$$

(b) $\frac{1}{2 x}-\frac{\sec ^{2} x}{\tan x+1}$
(c) $\frac{x}{2}-\tan x-1$

$$
\begin{aligned}
\frac{d}{d x} \ln \left(\frac{\sqrt{x}}{\tan x+1}\right) & =\frac{d}{d x}\left(\frac{1}{2} \ln x-\ln (\tan x+1)\right) \\
& =\frac{1}{2} \cdot \frac{1}{x}-\frac{\sec ^{2} x}{\tan x+1}
\end{aligned}
$$

(d) $\frac{1}{\frac{1}{2} x^{-1 / 2}}-\frac{1}{\sec ^{2} x}$

Logarithmic Differentiation
We can use properties of logarithms to simplify the process of taking derivatives of expressions that are complicated by
products quotients and powers.

Illustrative Example: Evaluate $\frac{d}{d x}\left(\frac{x^{2} \sqrt{x+1}}{\cos ^{4}(3 x)}\right)$
If y is adifferentionle function of x, then by the choir rule

$$
\begin{aligned}
& \frac{d}{d x} \ln y=\frac{1}{y} \frac{d y}{d x} \\
\Rightarrow & \frac{d y}{d x}=y\left(\frac{d}{d x} \ln y\right)
\end{aligned}
$$

This is useful if computing $\frac{d}{d x} \ln y$ is easier then computing $\frac{d y}{d x}$ directly.

Let $y=\frac{x^{2} \sqrt{x+1}}{\cos ^{4}(3 x)}$. Toke the log.

$$
\begin{gathered}
\ln y=\ln \left(\frac{x^{2} \sqrt{x+1}}{\cos ^{4}(3 x)}\right)=\ln \left(x^{2} \sqrt{x+1}\right)-\ln (\cos (3 x))^{4} \\
=\ln x^{2}+\ln (x+1)^{1 / 2}-\ln \left(\cos (3 x)^{4}\right. \\
=2 \ln x+\frac{1}{2} \ln (x+1)-4 \ln \cos (3 x)
\end{gathered}
$$

Now take the derivative.

$$
\begin{aligned}
\frac{d}{d x} \ln y & =\frac{d}{d x}\left(2 \ln x+\frac{1}{2} \ln (x+1)-4 \ln \cos (3 x)\right) \\
\frac{1}{y} \frac{d y}{d x} & =2 \frac{1}{x}+\frac{1}{2} \frac{1}{x+1}-4 \frac{-\sin (3 x) \cdot 3}{\cos (3 x)} \\
& =\frac{2}{x}+\frac{1}{2(x+1)}+12 \frac{\sin (3 x)}{\cos (3 x)} \\
\frac{d y}{d x} & =y\left(\frac{2}{x}+\frac{1}{2(x+1)}+12 \tan (3 x)\right)
\end{aligned}
$$

Now use $y=\frac{x^{2} \sqrt{x+1}}{\cos ^{4}(3 x)}$ to get

$$
\frac{d y}{d x}=\frac{x^{2} \sqrt{x+1}}{\cos ^{4}(3 x)}\left(\frac{2}{x}+\frac{1}{2(x+1)}+12 \tan (3 x)\right)
$$

Logarithmic Differentiation

If the differentiable function $y=f(x)$ consists of complicated products, quotients, and powers:
(i) Take the logarithm of both sides, i.e. $\ln (y)=\ln (f(x))$. Then use properties of logs to express $\ln (f(x))$ as a sum/difference of simpler terms.
(ii) Take the derivative of each side, and use the fact that $\frac{d}{d x} \ln (y)=\frac{\frac{d y}{d x}}{y}$.
(iii) Solve for $\frac{d y}{d x}$ (i.e. multiply through by y), and replace y with $f(x)$ to express the derivative explicitly as a function of x.

Example
Find $\frac{d y}{d x}$.
$y=\frac{x^{3}(4 x-1)^{5}}{\sqrt[4]{x+5}} \quad$ Tare the \log.

$$
\begin{aligned}
\ln y & =\ln \left(\frac{x^{3}(4 x-1)^{5}}{\sqrt[4]{x+5}}\right) \\
& =\ln x^{3}+\ln (4 x-1)^{5}-\ln (x+5)^{\frac{1}{4}} \\
& =3 \ln x+5 \ln (4 x-1)-\frac{1}{4} \ln (x+5)
\end{aligned}
$$

Tale the derivative.

$$
\begin{aligned}
\frac{d}{d x} \ln y & =\frac{d}{d x}\left(3 \ln x+5 \ln (4 x-1)-\frac{1}{4} \ln (x+5)\right) \\
\frac{1}{y} \frac{d y}{d x} & =3 \frac{1}{x}+5 \frac{4}{4 x-1}-\frac{1}{4} \frac{1}{x+5} \\
\frac{d y}{d x} & =y\left(\frac{3}{x}+\frac{20}{4 x-1}-\frac{1}{4(x+5)}\right)
\end{aligned}
$$

use thot $y=\frac{x^{3}(4 x-1)^{5}}{\sqrt[4]{x+5}}$

$$
\frac{d y}{d x}=\frac{x^{3}(4 x-1)^{5}}{\sqrt[4]{x+5}}\left(\frac{3}{x}+\frac{20}{4 x-1}-\frac{1}{4(x+5)}\right)
$$

Logarithmic Differentiation is required
If $y=x^{x}$, find $\frac{d y}{d x}$.
Note, the base is variable, so the function is not exponential, and the power if variable, so the function is not a power function. We don't have a rule for this.

Well use logarithmic differentiation.

$$
y=x^{x}, \quad \ln y=\ln x^{x}=x \ln x
$$

Use the product rae on the right.

$$
\frac{d}{d x} \ln y=\frac{d}{d x}(x \ln x)
$$

$$
\begin{aligned}
\frac{1}{y} \frac{d y}{d x} & =\left(\frac{d}{d x} x\right) \ln x+x\left(\frac{d}{d x} \ln x\right) \\
& =1 \cdot \ln x+x \cdot \frac{1}{x} \\
& =\ln x+1 \\
\frac{d y}{d x} & =y(\ln x+1) \quad \text { but } y=x^{x}
\end{aligned}
$$

So

$$
\frac{d}{d x} x^{x}=x^{x}(\ln x+1)
$$

Questions

Find $\frac{d y}{d x}$.
$y=\frac{(x+3)(x-4)^{2}}{\sqrt{x}(x+1)^{3}}$

$$
\begin{aligned}
\ln \left(\frac{(x+3)(x-4)^{2}}{\sqrt{x}(x+1)^{3}}\right) & =\ln \left((x+3)(x-4)^{2}\right)-\ln \left(\sqrt{x}(x+1)^{3}\right) \\
& =\ln \left((x+3)(x-4)^{2}\right)-\left[\ln \sqrt{x}+\ln (x+1)^{3}\right]
\end{aligned}
$$

(a) $\frac{d y}{d x}=\left[\frac{(x+3)(x-4)^{2}}{\sqrt{x}(x+1)^{3}}\right]\left(\frac{1}{x+3}+\frac{2}{x-4}-\frac{1}{2 x}-\frac{3}{x+1}\right)$
(b) $\frac{d y}{d x}=\left[\frac{(x+3)(x-4)^{2}}{\sqrt{x}(x+1)^{3}}\right]\left(\frac{1}{x+3}+\frac{1}{(x-4)^{2}}-\frac{1}{\sqrt{x}}-\frac{1}{(x+1)^{3}}\right)$
(c) $\frac{d y}{d x}=\frac{1}{x+3}+\frac{2}{x-4}-\frac{1}{2 x}-\frac{3}{x+1}$

The number e

We have already defined e by the limit

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

An alternative definition of the number e is given by

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
$$

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
$$

Evaluate the limit
Let k be defined by $\frac{1}{k}=\frac{2}{n}$.

$$
\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right)^{n}
$$

Thin $n=2 k . \quad n \rightarrow \infty$ if and only if $k \rightarrow \infty$.

$$
\begin{array}{rlrl}
\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right)^{n} & =\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{2 k} & \begin{array}{l}
\text { Recall } \\
b c
\end{array} a^{c} \\
& \left.=a^{b}\right)^{k \rightarrow \infty}
\end{array}\left(\left(1+\frac{1}{k}\right)^{k}\right)^{2} \quad a^{2} \quad l \begin{aligned}
&
\end{aligned}
$$

$$
=(e)^{2}=e^{2}
$$

Recall
if

$$
\lim _{x \rightarrow c} f(x)=L
$$

then

$$
\lim _{x \rightarrow c}(f(x))^{2}=L^{2}
$$

Section 4.1: Related Rates

Motivating Example: A spherical balloon is being filled with air. Suppose that we know that the radius is increasing in time at a constant rate of $2 \mathrm{~mm} / \mathrm{sec}$. Can we determine the rate at which the surface area of the balloon is increasing at the moment that the radius is 10 cm ?

Figure: Spherical Balloon

Example Continued...
Suppose that the radius r and surface area $S=4 \pi r^{2}$ of a sphere are differentiable functions of time. Write an equation that relates

$$
\frac{d S}{d t} \text { to } \frac{d r}{d t}
$$

The chain rule says that $\frac{d S}{d t}=\frac{d S}{d r} \frac{d r}{d t}$

So

$$
\begin{gathered}
\frac{d S}{d t}=\frac{d}{d r}\left(4 \pi r^{2}\right) \cdot \frac{d r}{d t}=4 \pi(2 r) \frac{d r}{d t} \\
\frac{d S}{d t}=8 \pi r \frac{d r}{d t}
\end{gathered}
$$

Given this result, find the rate at which the surface area is changing when the radius is 10 cm .
we have $\frac{d S}{d t}=8 \pi r \frac{d r}{d t}$ and r is increasing C $2 \mathrm{~mm} / \mathrm{sec}$.

$$
\begin{aligned}
\frac{d r}{d t}=2 \frac{\mathrm{~mm}}{\mathrm{sec}} \quad \text { when } r & =10 \mathrm{~cm} \\
& =100 \mathrm{~mm} \\
\frac{d S}{d t} & =8 \pi(100 \mathrm{~mm}) \cdot 2 \frac{\mathrm{~mm}}{\mathrm{sec}} \\
& =1600 \pi \frac{\mathrm{~mm}^{2}}{\mathrm{sec}}
\end{aligned}
$$

The surface area is increasing $C 1600 \pi \mathrm{~mm}^{2}$ per sec,

