Oct. 5 Math 1190 sec. 52 Fall 2016

Section 3.3: Derivatives of Logarithmic Functions

Properties of logarithms can be used to simplify expressions
characterized by products, quotients and powers.
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Question

Evaluate the derivative. Use properties of logs to simplify the process.
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Logarithmic Differentiation

We can use properties of logarithms to simplify the process of taking
derivatives of expressions that are complicated by

products quotients and  powers.
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Logarithmic Differentiation

If the differentiable function y = f(x) consists of complicated products,
quotients, and powers:

(i) Take the logarithm of both sides, i.e. In(y) = In(f(x)). Then use
properties of logs to express In(f(x)) as a sum/difference of
simpler terms.

(i) Take the derivative of each side, and use the fact that
dy

& Inly) = 2.

(iii) Solve for % (i.e. multiply through by y), and replace y with f(x) to
express the derivative explicitly as a function of x.
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Logarithmic Differentiation is required
If y = x*, find %.
Note, the base is variable, so the function is not exponential, and the

power if variable, so the function is not a power function. We don’t
have a rule for this.
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The number e

We have already defined e by the limit
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An alternative definition of the number e is given by
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Section 4.1: Related Rates
Motivating Example: A spherical balloon is being filled with air.
Suppose that we know that the radius is increasing in time at a
constant rate of 2 mm/sec. Can we determine the rate at which the
surface area of the balloon is increasing at the moment that the radius
is 10 cm?

Figure: Spherical Balloon



Example Continued...
Suppose that the radius r and surface area S = 4xr? of a sphere are
differentiable functions of time. Write an equation that relates
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Given this result, find the rate at which the surface area is changing
when the radius is 10 cm.
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