Oct 5 Math 2306 sec. 53 Fall 2018

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials, e
- sines and/or cosines, $\sin (k x)$ ar $\cos (k x)$
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Examples of Forms of y_{p} based on g (Trial Guesses)

(a) $g(x)=1$ (or really any constant) $y_{p}=A$
(b) $g(x)=x-7 y_{p}=A x+B$
(c) $g(x)=5 x^{2} y_{p}=A x^{2}+B x+C$
(d) $g(x)=3 x^{3}-5 y_{p}=A x^{3}+B x^{2}+C x+D$
(e) $g(x)=x e^{3 x} y_{p}=(A x+B) e^{3 x}$
(f) $g(x)=\cos (7 x) y_{p}=A \cos (7 x)+B \sin (7 x)$

Examples of Forms of y_{p} based on g (Trial Guesses)
(g) $g(x)=\sin (2 x)-\cos (4 x)$

$$
y_{\rho}=A \sin (2 x)+B \cos (2 x)+C \sin (4 x)+D \cos (4 x)
$$

Linear combo of $2^{\text {nd }}$ degree polynorids
(h) $g(x)=x^{2} \sin (3 x)$ times sine and cosine of $3 x$

$$
y_{p}=\left(A x^{2}+B x+C\right) \sin (3 x)+\left(D x^{2}+E x+F\right) \cos (3 x)
$$

Examples of Forms of y_{p} based on g (Trial Guesses)
(i) $g(x)=e^{x} \cos (2 x)$ Liver combo of e^{x} times sine

$$
y_{p}=A e^{x} \cos (2 x)+B e^{x} \sin (2 x)
$$

(j) $g(x)=x e^{-x} \sin (\pi x) \quad 1^{\text {st }}$ degree poly times e^{-x} times sines + cosine of πx.

$$
y_{p}=(A x+B) e^{-x} \sin (\pi x)+(C x+D) e^{-x} \cos (\pi x)
$$

* Suppose $g(x)=3 x \sin ^{2}(\pi x)$ wed have to use the $I D$ $\sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \operatorname{Cos}(2 \theta) \quad$ so $\quad g(x)=3 x\left(\frac{1}{2}-\frac{1}{2} \operatorname{Cos}(2 \pi x)\right)=\frac{3}{2} x-\frac{3}{2} x \operatorname{Cos}(2 \pi x)$ October 3, $2018 \quad 4 / 25$

The Superposition Principle
Example: Determine the correct form of the particular solution using the method of undetermined coefficients for the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}+16 x^{2}
$$

By the principle of superposition, if

$$
y_{p,} \text { solus } \quad y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}
$$

and

$$
y_{p_{2}} \text { solves } y^{\prime \prime}-4 y^{\prime}+4 y=16 x^{2}
$$

Then $y_{p}=y_{p_{1}}+y_{p 2}$ solves

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}+16 x^{2}
$$

We know

$$
y_{p_{1}}=A e^{-3 x}
$$

and $y_{P_{2}}=B x^{2}+C x+D$

$$
\text { so } y_{p}=A e^{-3 x}+B x^{2}+C x+D
$$

On wedresdany, we found $A=\frac{6}{25}$

$$
\begin{aligned}
B=4, C & =8, D=6 \text { so } \\
y_{p} & =\frac{6}{25} e^{-3 x}+4 x^{2}+8 x+6
\end{aligned}
$$

A Glitch!

$$
\begin{gathered}
\cos ^{\text {s. sent }}{ }^{\text {coefficient }} \\
\searrow y^{\prime \prime}-y^{\prime}=3 e^{x}
\end{gathered}
$$

supp ${ }^{3 / 4}$

$$
\begin{aligned}
& y_{p}=A e^{x} \\
& y_{p}^{\prime}=A e^{x} \\
& y_{p}^{\prime \prime}=A e^{x}
\end{aligned}
$$

we ned $y_{p}^{\prime \prime}-y_{p}^{\prime}=3 e^{x}$

$$
\begin{aligned}
A e^{x}-A e^{x} & =3 e^{x} \\
0 & =3 e^{x}
\end{aligned}
$$

$$
\begin{array}{cc}
\text { refusing } 0=3 \text { always } \\
\text { false. }
\end{array}
$$

Lat's look e y_{c}. y_{c} solves

$$
y^{\prime \prime}-y^{\prime}=0
$$

The characteristic equation is $m^{2}-m=0$

$$
m(m-1)=0
$$

$m=0$ or $m=1$ two distinct red roots

$$
y_{1}=e^{0 x}=1 \quad y_{2}=e^{1 x}=e^{x}
$$

One guess for yep solves the homogeneous equation

$$
\begin{aligned}
& y_{c}=c_{1}+c_{2} e^{x} \\
& y_{p}=A e^{x} \text { Duplicates } y_{2}
\end{aligned}
$$

well fix thy s by multiplying our "guess" bey x (or x to some power)

$$
y^{\prime \prime}-y^{\prime}=3 e^{x}
$$

Lat's try $y_{p}=A_{x} e^{x}$ substitute

$$
\begin{aligned}
y_{p}^{\prime} & =A x e^{x}+A e^{x} \\
y_{p}^{\prime \prime} & =A x e^{x}+A e^{x}+A e^{x} \\
& =A x e^{x}+2 A e^{x} \\
y_{p}^{\prime \prime}-y_{p}^{\prime} & =A x e^{x}+2 A e^{x}-\left(A x e^{x}+A e^{x}\right)=3 e^{x}
\end{aligned}
$$

collect like terms e^{x} and $x e^{x}$

$$
x e^{x}(A-A)+e^{x}(2 A-A)=3 e^{x}
$$

$$
\begin{aligned}
& A e^{x}=3 e^{x} \\
& A=3
\end{aligned}
$$

Thus $y_{p}=3 x e^{x}$. The gerund solution
is

$$
y=c_{1}+c_{2} e^{x}+3 x e^{x}
$$

We'll consider cases

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+g_{2}(x)+\cdots+g_{i}(x)
$$

Using superposition as needed, begin with assumption:

$$
y_{p}=y_{p_{1}}+\cdots+y_{p_{k}}
$$

where $y_{p_{i}}$ has the same general form as $g_{i}(x)$.

Case I: y_{p} as first written has no part that duplicates the complementary solution y_{c}. Then this first form will suffice.

Case II: y_{p} has a term $y_{p_{i}}$ that duplicates a term in the complementary solution y_{c}. Multiply that term (only the $y_{p_{i}}$ at issue) by x^{n}, where n is the smallest positive integer that eliminates the duplication.

