October 5 Math 2306 sec. 56 Fall 2017

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

September 29, 2017

1/38

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

We assume that y_p has the same basic form as g.

Examples of Forms of y_p based on g (Trial Guesses)

(a)
$$g(x) = 1$$
 (or really any constant), $y_p = A$
(b) $g(x) = x - 7$, $y_p = Ax + B$
(c) $g(x) = 5x^2$, $y_p = Ax^2 + Bx + C$
(d) $g(x) = 3x^3 - 5$, $y_p = Ax^3 + Bx^2 + Cx + D$
(e) $g(x) = xe^{3x}$, $y_p = (Ax + B)e^{3x}$ (f) $g(x) = \cos(7x)$,
 $y_p = A\cos(7x) + B\sin(7x)$
(g) $g(x) = \sin(2x) - \cos(4x)$,
 $y_p = A\sin(2x) + B\cos(2x) + C\sin(4x) + D\cos(4x)$ (h)
 $g(x) = x^2\sin(3x)$,
 $y_p = (Ax^2 + Bx + C)\sin(3x) + (Dx^2 + Ex + F)\cos(3x)$

<ロ> <四> <四> <四> <四> <四</p>

Examples of Forms of y_p based on g (Trial Guesses)

(i)
$$g(x) = e^{x} \cos(2x)$$

 $\vartheta_{P} = A e^{x} \cos(2x) + B e^{x} \sin(2x)$

(j)
$$g(x) = xe^{-x}\sin(\pi x)$$

 $y_{P} = (A_{X+B})e^{-x}S_{in}(\pi x) + (C_{X+D})e^{-x}C_{os}(\pi x)$

September 29, 2017 3 / 38

<ロ> <四> <四> <四> <四> <四</p>

The Superposition Principle

Example: Determine the correct form of the particular solution using the method of undetermined coefficients for the ODE

$$y'' - 4y' + 4y = 6e^{-3x} + 16x^2$$

We can consider the two problems

$$5'' - 45' + 45 = 6e^{-3x}$$

suess $5e_1 = Ae^{-3x}$ we found $A = \frac{6}{25}$
 $5e_1 = \frac{6}{25}e^{-3x}$ (sept. 28)
And Consider $5e_1'' - 45' + 4e_2 = 16x^2$

Svess
$$y_{P_2} = Ax^2 + Bx + C$$

we found $A = 4$, $B = 8$, $C = 6$
 $y_{P_2} = 4x^2 + 8x + 6$

For
$$5'' - 45' + 45 = 6e^{3x} + 16x^{2}$$

 $5p = 5e_{1} + 5e_{2} = \frac{6}{25}e^{3x} + 4x^{2} + 8x + 6$

September 29, 2017 5 / 38

・ロト・西ト・ヨト・ヨー うへの

A Glitch!

$$y'' - y' = 3e^{x}$$

At first glone, it looks like $y_{p} = Ae^{x}$.
Substitute

$$y_{p}' = Ae^{x} \quad ond \quad y_{p}'' = Ae^{x}$$

$$y_{p}'' - y_{p}' = Ae^{x} - Ae^{x} = 3e^{x}$$

$$0e^{x} = 3e^{x}$$

$$fhis \quad requires \quad 0=3$$

For indetunined cuefficients the work, well

$$September 29,2017 \quad 6/38$$

have to modify our guess.

The associated homogeneous equation is

$$y'' - y' = 0$$

with Chereckistic eqn $m^2 - M = 0$
 $m(n-1) = 0 \Rightarrow M_1 = 0, m_2 = 1$

5.
$$y_c = C_1 e + C_2 e = C_1 + C_2 e$$

September 29, 2017 7 / 38

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

We'll consider cases

Using superposition as needed, begin with assumption:

$$y_{p} = y_{p_1} + \cdots + y_{p_k}$$

where y_{p_i} has the same **general form** as $g_i(x)$.

Case I: y_p as first written has no part that duplicates the complementary solution y_c . Then this first form will suffice.

Case II: y_{ρ} has a term y_{ρ_i} that duplicates a term in the complementary solution y_c . Multiply that term by x^n , where *n* is the smallest positive integer that eliminates the duplication.

イロト 不得 トイヨト イヨト ヨー ろくの

Case II Examples

Solve the ODE

$$y^{\prime\prime}-2y^{\prime}+y=-4e^{x}$$

Find
$$y_c$$
: Charac. eqn $m^2 - 2m + 1 = 0$
 $(m-1)^2 = 0 \implies M = 1$ repeated
 $y_1 = e^*, y_2 = x = e^*$
 $s_2 = y_c = c_1 = e^* + c_2 x = e^*$

September 29, 2017 9 / 38

Modify again yp= Ax2 & This shall work!

$$y_{p} = Ax^{2}e^{x}$$

$$y_{p}' = Ax^{2}e^{x} + 2Axe^{x}e^{x}$$

$$y_{p}'' = Ax^{2}e^{x} + 2Axe^{x}e^{x} + 2Axe^{x}e^{x} + 2Ae^{x}e^{x}$$

$$= Ax^{2}e^{x} + 4Axe^{x}e^{x} + 2Ae^{x}e^{x}$$

$$y_1'' - z_{y_1}' + y_1 =$$

 $Ax^2 e^2 + y_1 + x_2 e^2 + z_1 + z_1 + z_2 e^2 = -4e^2$

Collect like terms

$$x^{2} \overset{\times}{e} (A - 2A + A) + x \overset{\times}{e} (4A - 4A) + \overset{\times}{e} (2A) = -4 \overset{\times}{e}$$

$$\overset{\vee}{0} \qquad 2A \overset{\times}{e} = -4 \overset{\times}{e}$$

$$A = -2$$
So $y_{p} = -2x^{2} \overset{\times}{e}$
The general colution to the ODE $y_{1} + y_{p}$

$$y_{2} = c_{1} \overset{\times}{e} + c_{2} \overset{\times}{x} \overset{\times}{e} - 2x^{2} \overset{\times}{e}$$

September 29, 2017 11 / 38

・ロト・西ト・ヨト・ヨー つくぐ

Find the form of the particular soluition

$$y'' - 4y' + 4y = \sin(4x) + xe^{2x}$$
Find y_c : $m^2 - 4m + 4 = 0$ $(m - 2)^2 = 0 \Rightarrow m = 2$ repeated
 $y_1 = e^{2x}$, $y_2 = xe^{2x}$ $y_c = c_1e^{2x} + c_2xe^{2x}$
To find y_e , will consider $y_e = y_{e_1} + y_{e_2}$ when
 y_{e_1} solves $y'' - 4y' + 4y = \sin(4x)$ and
 y_{e_2} solves $y'' - 4y' + 4y = xe^{2x}$
 $y_c = c_1e^{2x} + c_2xe^{2x}$

September 29, 2017 13 / 38

$$\begin{aligned} y_{\rho_{2}} : g_{1}(x) &= x e^{2x} \\ y_{\rho_{2}} &= ((x+D))e^{2x} &= (x e^{2x} + D)e^{2x} \\ y_{\rho_{2}} &= ((x+D))e^{2x} &= (x e^{2x} + D)e^{2x} \\ y_{\rho_{2}} &= ((x+D))e^{2x} &= (x e^{2x} + D)e^{2x} \\ y_{\rho_{2}} &= ((x+D))e^{2x} \\ y_{\rho_{2}} &= ((x+D))e^{2x} \\ z^{2x} &= (x e^{2x} + D)e^{2x} \\ z^{2x} &$$

$$y_{p} = AS_{iw}(u_{x}) + B(os(u_{x}) + C_{x}^{3}e^{2k} + D_{x}^{2}e^{2k}$$

September 29, 2017 14 / 38

・ロト・西ト・ヨト・ヨー うへの

Find the form of the particular soluition

$$y''' - y'' + y' - y = \cos x + x^4$$

Find
$$y_{L}$$
: $m^{3} - m^{2} + m - 1 = 0$
 $(m^{3} - m^{2}) + (m - 1) = 0 \Rightarrow m^{2}(m - 1) + (m - 1) = 0$
 $(m^{2} + 1)(m - 1) = 0$

$$M^{2}+1=0 \Rightarrow m^{2}=-1$$
, $m=0^{\pm}i$, $d=0$, $\beta=1$
 $y_{1}=e^{ix}Cos(1x)$, $y_{2}=e^{ix}Sin(1x)$
 $m-1=0 \Rightarrow m=1$, $y_{3}=e^{ix}$
 $y_{c}=C_{1}Corx +C_{2}Sinx +C_{3}e^{ix}$

2

イロト イヨト イヨト イヨト

For
$$y_{P_1}$$
, $y_1(x) = \cos x$
 $y_{P_2} = A\cos x + B\sin x$ Modify
 $y_{P_1} = A x \cos x + B x \sin x$ Works
For y_{P_2} , $y_2(x) = x^4$
 $y_{P_2} = Cx^4 + Dx^3 + Ex^2 + Fx + G$ works

yp= Ax Corx + Bx Sinx + Cx4 + Dx3 + Ex2 + Fx + G

September 29, 2017 16 / 38

▲口 → ▲圖 → ▲ 国 → ▲ 国 → 二 国

Find the form of the particular soluition

$$y'' - 2y' + 5y = e^{x} + 7\sin(2x)$$
Find 5c : $m^{2} - 2m + 5 = 0$ $m^{2} - 2m + 1 + 4 = 0$
 $(m - 1)^{2} + 4 = 0$
 $(m - 1)^{2} = -4$
 $m - 1 = \pm 2i$ $\Rightarrow \cdot m = 1 \pm 2i$

$$d=1, P=2$$

$$y_{1} = e^{X} \cos(2x), y_{2} = e^{X} \sin(2x)$$

$$y_{1} = C_{1} e^{X} \cos(2x) + C_{2} e^{X} \sin(2x)$$

September 29, 2017 17 / 38

2

イロン イ理 とく ヨン イヨン

For J_{P2} , $g_2(x) = 7 G_{1x}(2x)$ $J_{P2} = B S_{1n}(2x) + C C_{0s}(2x)$ Works $J_{P} = Ae^{x} + B S_{1n}(2x) + C (os(2x))$

Solve the IVP

$$y'' - 2y' + y = -4e^x$$
 $y(0) = -1$, $y'(0) = 1$

From several Slides bach

$$y = c_{1} \stackrel{\times}{e} + c_{2} \times \stackrel{\times}{e} - 2 \times \stackrel{\times}{2} \stackrel{\times}{e}$$

$$y' = c_{1} \stackrel{\times}{e} + c_{2} \times \stackrel{\times}{e} + c_{2} \stackrel{\times}{e} - 2x^{2} \stackrel{\times}{e} - 4x \stackrel{\times}{e}$$

$$y(0) = c_{1} \stackrel{\times}{e} + c_{2} \cdot 0 \stackrel{\times}{e} - 2 \cdot 0^{2} \stackrel{\times}{e} = c_{1} = -1$$

$$y'(0) = c_{1} \stackrel{\times}{e} + c_{2} \cdot 0 \stackrel{\times}{e} + c_{2} \stackrel{\times}{e} - 2 \cdot 0^{2} \stackrel{\times}{e} - 4 \cdot 0 \stackrel{\times}{e} = 1$$

$$c_{1} + c_{2} = 1$$

September 29, 2017 19 / 38

<ロ> <四> <四> <四> <四> <四</p>

$$C_{1} = -1$$
 so $C_{2} = 1 - C_{1} = 1 - (-1) = 2$
The solution to the IVP is
 $y = -e^{x} + 2xe^{x} - 2x^{2}e^{x}$

September 29, 2017 20 / 38

・ロト・西ト・ヨト・ヨー つくぐ

Section 10: Variation of Parameters

We are still considering nonhomogeneous, linear ODEs. Consider equations of the form

$$y'' + y = \tan x$$
, or $x^2y'' + xy' - 4y = e^x$.

The method of undetermined coefficients is not applicable to either of these. We require another approach.

イロン イ理 とく ヨン イヨン

Variation of Parameters

For the equation in standard form

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = g(x),$$

suppose $\{y_1(x), y_2(x)\}$ is a fundamental solution set for the associated homogeneous equation. We seek a particular solution of the form

$$y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$$

where u_1 and u_2 are functions we will determine (in terms of y_1 , y_2 and g).

This method is called variation of parameters.