October 5 Math 2306 sec. 57 Fall 2017

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

We assume that y_{p} has the same basic form as g.

Examples of Forms of y_{p} based on g (Trial Guesses)

 (a) $g(x)=1$ (or really any constant), $y_{p}=A$(b) $g(x)=x-7, y_{p}=A x+B$
(c) $g(x)=5 x^{2}, y_{p}=A x^{2}+B x+C$
(d) $g(x)=3 x^{3}-5, y_{p}=A x^{3}+B x^{2}+C x+D$
(e) $g(x)=x e^{3 x}, y_{p}=(A x+B) e^{3 x}$ (f) $g(x)=\cos (7 x)$,
$y_{p}=A \cos (7 x)+B \sin (7 x)$
(g) $g(x)=\sin (2 x)-\cos (4 x)$,
$y_{p}=A \sin (2 x)+B \cos (2 x)+C \sin (4 x)+D \cos (4 x)(\mathrm{h})$
$g(x)=x^{2} \sin (3 x)$,
$y_{p}=\left(A x^{2}+B x+C\right) \sin (3 x)+\left(D x^{2}+E x+F\right) \cos (3 x)$
(i) $g(x)=e^{x} \cos (2 x), y_{p}=A e^{x} \cos (2 x)+B e^{x} \sin (2 x)$
(j) $g(x)=x e^{-x} \sin (\pi x)$,
$y_{p}=(A x+B) e^{-x} \sin (\pi x)+(C x+D) e^{-x} \cos (\pi x)$

A Glitch!

$$
\begin{aligned}
& y^{\prime \prime}-y^{\prime}=3 e^{x} \\
& g(x)=3 e^{x} \quad \text { guess } y_{p}=A e^{x} \\
& y_{p}^{\prime}=A e^{x}, y_{p}^{\prime \prime}=A e^{x} \\
& y_{p}^{\prime \prime}-y_{p}^{\prime}=A e^{x}-A e^{x}=3 e^{x} \\
& O e^{x}=3 e^{x} \text { require } 0=3 .
\end{aligned}
$$

wall hove to modify our guess if this is going to world.

Considen th ossocioted homogeneows egn

$$
y^{\prime \prime}-y^{\prime}=0
$$

Chere. eqn $\quad m^{2}-m=0 \Rightarrow m(m-1)=0 \Rightarrow m_{1}=0, m_{2}=1$

$$
y_{1}=e^{0^{x}}, y_{2}=e^{x} \quad y_{c}=c_{1}+c_{2} e^{x}
$$

We'll consider cases

Using superposition as needed, begin with assumption:

$$
y_{p}=y_{p_{1}}+\cdots+y_{p_{k}}
$$

where $y_{p_{i}}$ has the same general form as $g_{i}(x)$.
Case I: y_{p} as first written has no part that duplicates the complementary solution y_{c}. Then this first form will suffice.

Case II: y_{p} has a term $y_{p_{i}}$ that duplicates a term in the complementary solution y_{c}. Multiply that term by x^{n}, where n is the smallest positive integer that eliminates the duplication.

Case II Examples
Solve the ODE

$$
y^{\prime \prime}-2 y^{\prime}+y=-4 e^{x}
$$

Find y_{c} : Char. En $m^{2}-2 m+1=0 \quad(m-1)^{2}=0$ $m=1$ repeated

$$
\begin{aligned}
& y_{1}=e^{x}, y_{2}=x e^{x} \\
& y_{c}=c_{1} e^{x}+c_{2} x e^{x}
\end{aligned}
$$

Find $y_{p}: \quad g(x)=$ constant times e^{x}
Initial gums $y_{p}=A e^{x}$ wont work
Modify

$$
y_{p}=A x e^{x}
$$

wont work

Modoty again $\quad y_{p}=A x^{2} e^{x} \quad$ will work $(n=2)$

$$
\begin{aligned}
& y_{p}= A x^{2} e^{x} \\
& y_{p}^{\prime}=A x^{2} e^{x}+2 A x e^{x} \\
& y_{p}^{\prime \prime}=A x^{2} e^{x}+2 A x e^{x}+2 A x e^{x}+2 A e^{x} \\
&=A x^{2} e^{x}+4 A x e^{x}+2 A e^{x} \\
& y_{p}^{\prime \prime}-2 y p^{\prime}+y_{p}=-4 e^{x} \\
& A x^{2} e^{x}+4 A x e^{x}+2 A e^{x}-2\left(A x^{2} e^{x}+2 A x e^{x}\right)+A x^{2} e^{x}=-4 e^{x}
\end{aligned}
$$

Collect like terms

$$
\begin{aligned}
& x^{2} e^{x}(A-2 A+A)+x e^{x}(4 A-4 A)+2 A e^{x}=-4 e^{x} \\
& 0^{\prime \prime} \\
& 2 A e^{x}=-4 e^{x} \\
& A=-2 \\
& \text { so } y_{p}=-2 x^{2} e^{x}
\end{aligned}
$$

The geneal solution to the ODE is

$$
y=c_{1} e^{x}+c_{2} x e^{x}-2 x^{2} e^{x}
$$

Find the form of the particular solution

$$
y^{\prime \prime}-4 y^{\prime}+4 y=\sin (4 x)+x e^{2 x}
$$

Find $y_{c}: m^{2}-4 m+4=0 \Rightarrow(m-2)^{2}=0 \quad m=2$ repeated

$$
y_{1}=e^{2 x} \quad, y_{2}=x e^{2 x} \quad y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}
$$

For yep, well consider two problems

$$
\begin{gathered}
y_{p_{1}}^{\prime \prime}-4 y_{p_{1}}^{\prime}+4 y_{p_{1}}=\sin (4 x) \quad g_{1}(x)=\sin (4 x) \\
y_{p_{2}}^{\prime \prime}-4 y_{p_{2}}^{\prime}+4 y_{p_{2}}=x e^{2 x} \quad g_{2}(x)=x e^{2 x} \\
y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}
\end{gathered}
$$

$g_{1}(x)=\sin (4 x) \quad y_{p_{1}}=A \sin (4 x)+B \cos (4 x)$ will work in this form

$$
\begin{aligned}
S_{2}(x)=x e^{2 x} \quad & y_{p_{2}}=(C x+D) e^{2 x}=C x e^{2 x}+D e^{2 x} \quad \text { No } 90 \\
& y_{p_{2}}=(C x+D) x e^{2 x}=C x^{2} e^{2 x}+D x e^{2 x} \text { sill good } \\
& y_{p_{2}}=(C x+D) x^{2} e^{2 x}=C x^{3} e^{2 x}+D x^{2} e^{2 x} \text { This corset }
\end{aligned}
$$

The correct form for y_{p} is $y_{p_{1}}+y_{p_{2}}$

$$
y_{p}=A \sin (4 x)+B \cos (4 x)+C x^{3} e^{2 x}+D x^{2} e^{2 x}
$$

Find the form of the particular solution

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=\cos x+x^{4}
$$

Find $y_{c}: \quad m^{3}-m^{2}+m-1=0$

$$
\begin{aligned}
\left(m^{3}-m^{2}\right)+(m-1)=0 \Rightarrow m^{2}(m-1)+(m-1)=0 \\
\left(m^{2}+1\right)(m-1)=0
\end{aligned}
$$

$$
\begin{gathered}
m^{2}+1=0 \Rightarrow m^{2}=-1, m=0 \pm i \quad \alpha=0, \quad \beta=1 \\
y_{1}=e^{0 v} \cos (1 x) \quad y_{2}=e^{0 x} \sin (1 x) \\
m-1=0 \Rightarrow m=1 \quad y_{3}=e^{x} \\
y_{c}=c_{1} \cos x+c_{2} \sin x+c_{3} e^{x}
\end{gathered}
$$

$$
\begin{aligned}
& g_{1}(x)=\cos x \quad y_{p_{1}}=A \cos x+B \sin x \quad \text { wont work, natches } \\
& \text { pont of yc }
\end{aligned}
$$

$$
\begin{aligned}
& \text { so } \\
& y_{p}=A x \cos x+B x \sin x+C x^{4}+D x^{3}+E x^{2}+F x+G
\end{aligned}
$$

\#

Find the form of the particular solution

$$
y^{\prime \prime}-2 y^{\prime}+5 y=e^{x}+7 \sin (2 x)
$$

Find $y c: \quad m^{2}-2 m+5=0 \quad m^{2}-2 m+1+4=0$

$$
(m-1)^{2}+4=0
$$

$$
(m-1)^{2}=-4
$$

$$
(m-1)= \pm 2 i \Rightarrow m=1 \pm 2 i
$$

$$
\begin{aligned}
& \alpha=1, \beta=2 \\
& y_{1}=e^{x} \operatorname{cor}(2 x) \quad y_{2}=e^{x} \sin (2 x) \\
& y_{c}=c_{1} e^{x} \cos (2 x)+c_{2} e^{x} \sin (2 x)
\end{aligned}
$$

$g_{1}(x)=e^{x} \quad y_{p_{1}}=A e^{x} \quad$ Doesn't match y_{c}, will work

$$
g_{2}(x)=7 \sin (2 x)
$$

$y_{p_{2}}=B \sin (2 x)+C \cos (2 x)$ will work

Finally

$$
y_{p}=A e^{x}+? \sin (2 x)+C \cos (2 x)
$$

Solve the IVP

$$
y^{\prime \prime}-2 y^{\prime}+y=-4 e^{x} \quad y(0)=-1, \quad y^{\prime}(0)=1
$$

We solved the $O D E$ and got the serena solution

$$
\begin{aligned}
& y=c_{1} e^{x}+c_{2} x e^{x}-2 x^{2} e^{x} \\
& y^{\prime}=c_{1} e^{x}+c_{2} x e^{x}+c_{2} e^{x}-2 x^{2} e^{x}-4 x e^{x} \\
& y(0)=c_{1} e^{0}+c_{2} \cdot 0 e^{0}-2 \cdot 0^{2} e^{0}=c_{1}=-1 \Rightarrow c_{1}=-1 \\
& y^{\prime}(0)=c_{1} e^{0}+c_{2} \cdot 0 e^{0}+c_{2} e^{0}-2 \cdot 0^{2} e^{0}-4 \cdot 0 \cdot e^{0}=1 \\
& c_{1}+c_{2}=1
\end{aligned}
$$

$$
c_{2}=1-c_{1} \text { and } c_{1}=-1 \Rightarrow c_{2}=1+1=2
$$

The solution to the IV Pis

$$
y=-e^{x}+2 x e^{x}-2 x^{2} e^{x}
$$

Section 10: Variation of Parameters

We are still considering nonhomogeneous, linear ODEs. Consider equations of the form

$$
y^{\prime \prime}+y=\tan x, \quad \text { or } \quad x^{2} y^{\prime \prime}+x y^{\prime}-4 y=e^{x} .
$$

The method of undetermined coefficients is not applicable to either of these. We require another approach.

Variation of Parameters

For the equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=g(x)
$$

suppose $\left\{y_{1}(x), y_{2}(x)\right\}$ is a fundamental solution set for the associated homogeneous equation. We seek a particular solution of the form

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where u_{1} and u_{2} are functions we will determine (in terms of y_{1}, y_{2} and g).

This method is called variation of parameters.

