October 5 Math 3260 sec. 58 Fall 2017

Section 4.3: Linearly Independent Sets and Bases

We defined **linear dependence/independence** and **span** for elements of general vector spaces. Then, we defined a basis.

Definition: Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a **basis** of H provided

- (i) \mathcal{B} is linearly independent, and
- (ii) $H = \operatorname{Span}(\mathcal{B})$.

We can think of a basis as a *minimal spanning set*. All of the *information* needed to construct vectors in *H* is contained in the basis, and none of this information is repeated.

A Spanning Set Theorem

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ be a set in a vector space V and $H = \operatorname{Span}(S)$.

(a.) If one of the vectors in S, say \mathbf{v}_k is a linear combination of the other vectors in S, then the subset of S obtained by eliminating \mathbf{v}_k still spans H.

(b) If $H \neq \{0\}$, then some subset of S is a basis for H.

If we start with a spanning set, we can eliminate *duplication* and arrive at a basis.

Using the rref

Theorem: If $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$ and $B = [\mathbf{b}_1 \cdots \mathbf{b}_n]$ are row equivalent matrices, then Nul A = Nul B. That is, the equations

$$A\mathbf{x} = \mathbf{0}$$
 and $B\mathbf{x} = \mathbf{0}$

have the same solution set.

Note what this means! It means that $\{a_1, ..., a_n\}$ and $\{b_1, ..., b_n\}$ have **exactly the same linear dependence relationships**!

Theorem:

The pivot columns of a matrix A form a basis of Col A.

Caveat: This means we can use row reduction to identify a basis, but the vectors we obtain will be from the original matrix A. (As illustrated in the following example.)

4 / 40

Find a basis for Col A¹

$$A = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix} . \longrightarrow \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$pivot \quad columns$$

$$A \quad basis \quad for \quad (old is already of the columns)$$

$$\begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

¹Use a calculator to do the row reduction.

Find bases for Nul A and Col A

$$\frac{1}{x} = \begin{bmatrix} -3x_3 + 2x_4 \\ x_3 - 5x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 2 \\ -5 \\ 0 \\ 1 \end{bmatrix}$$

A basis for NulA is
$$\left\{ \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ -5 \\ 0 \\ 1 \end{bmatrix} \right\}$$

Section 4.4: Coordinate Systems

We begin with a theorem about uniqueness of linear combinations (of linearly independent vectors).

Theorem: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each vector \mathbf{x} in V, there is a unique set of scalars c_1, \dots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \cdots c_n \mathbf{b}_n.$$
The point of this theorem is that there is only one set of coefficients for a given \vec{x} .

Suppose $\vec{x} = C_1 \vec{b}_1 + C_2 \vec{b}_2 + \cdots + C_n \vec{b}_n$

and $\vec{x} = a_1 \vec{b}_1 + a_2 \vec{b}_2 + \cdots + a_n \vec{b}_n$

$$\vec{x} - \vec{x} = \vec{0}$$
 $\vec{0} = (c_1 - a_1)\vec{b}_1 + (c_2 - a_2)\vec{b}_2 + \dots + (c_n - a_n)\vec{b}_n$

Since the \vec{b} 's are linearly independent,

 $c_1 - a_1 = 0$
 $c_2 - a_2 = 0$
 \vdots
 $c_n - c_n = 0$
 \vdots
 \vdots

Coordinate Vectors

Definition: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be an **ordered** basis of the vector space V. For each \mathbf{x} in V we define the **coordinate vector of \mathbf{x} relative to the basis** \mathcal{B} to be the unique vector (c_1, \dots, c_n) in \mathbb{R}^n where these entries are the weights $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$.

We'll use the notation

$$\left[egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{arra$$

Example

Let $\mathcal{B} = \{1, t, t^2, t^3\}$ (in that order) in \mathbb{P}_3 . Determine $[\mathbf{p}]_{\mathcal{B}}$ where

(a)
$$\mathbf{p}(t) = 3 - 4t^2 + 6t^3 = 3 \cdot 1 + 0 \cdot t + (-4) t^2 + 6t^3$$

$$\begin{bmatrix} \vec{p} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 \\ 0 \\ -4 \\ 6 \end{bmatrix}$$

(b)
$$\mathbf{p}(t) = p_0 + p_1 t + p_2 t^2 + p_3 t^3$$

$$\begin{bmatrix} \vec{\rho} \end{bmatrix}_{\mathfrak{G}} \stackrel{\circ}{=} \begin{bmatrix} \rho_0 \\ \rho_1 \\ \rho_2 \end{bmatrix}$$

Example

$$\mathbf{x} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}.$$

Let
$$\mathbf{b}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$. Find $[\mathbf{x}]_{\mathcal{B}}$ for

$$\left[\vec{x}\right]_{\vec{0}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$
 such that

$$C_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

we can write this as the matrix equation

$$\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

The motion is [b, b). Using row reduction

$$\begin{bmatrix} 2 & -1 & 4 \\ 1 & 1 & 5 \end{bmatrix} \xrightarrow{\text{ref}} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 5 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

Coordinates in \mathbb{R}^n

Note from this example that $\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$ where $P_{\mathcal{B}}$ is the matrix $[\mathbf{b}_1 \ \mathbf{b}_2]$. The matrix $P_{\mathcal{B}}$ is called the **change of coordinates matrix** for the basis \mathcal{B} (or from the basis \mathcal{B} to the standard basis).

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be an ordered basis of \mathbb{R}^n . Then the change of coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ is the linear transformation defined by

$$[\mathbf{x}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1}\mathbf{x}$$

where the matrix

$$P_{\mathcal{B}} = [\mathbf{b}_1 \quad \mathbf{b}_2 \quad \cdots \quad \mathbf{b}_n].$$

Example

Let $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$. Determine the matrix $P_{\mathcal{B}}$ and its inverse.

$$P_{0} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}, Let(P_{0}) = 3 \qquad P_{0}^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$$

Use this to find

(a) the coordinate vector of $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$

$$\begin{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{bmatrix}^{0} = b_{-1}^{0} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

(b) the coordinate vector of $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$

$$\left[\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right]_{\mathfrak{G}} = \mathbf{p}_{\mathfrak{G}}^{-1} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

(c) a vector **x** whose coordinate vector is $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

$$\vec{\chi}: P_{0} \begin{bmatrix} \vec{x} \end{bmatrix}_{0} : \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} : \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

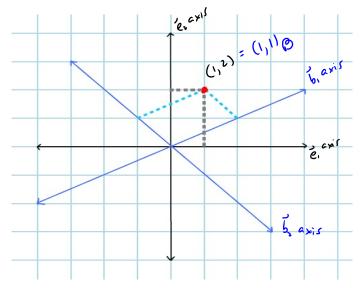


Figure: \mathbb{R}^2 shown using elementary basis $\{(1,0),(0,1)\}$ and with the alternative basis $\{(2,1),(-1,1)\}$.