October 5 Math 3260 sec. 58 Fall 2017

Section 4.3: Linearly Independent Sets and Bases

We defined linear dependence/independence and span for
elements of general vector spaces. Then, we defined a basis.

Definition: Let H be a subspace of a vector space V. An indexed set
of vectors B = {b4,...,bp} in Vis a basis of H provided

() Bis linearly independent, and

(i) H=Span(B).
We can think of a basis as a minimal spanning set. All of the
information needed to construct vectors in H is contained in the basis,

and none of this information is repeated.
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A Spanning Set Theorem

Let S = {vy,Vvo,...,Vp} be a setin a vector space V and H =Span(S).
(a.) If one of the vectors in S, say v is a linear combination of the
other vectors in S, then the subset of S obtained by eliminating v still
spans H.

(b) If H # {0}, then some subset of S is a basis for H.

If we start with a spanning set, we can eliminate duplication and arrive
at a basis.
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Using the rref

Theorem: If A=[a;---a,] and B = [by - - - b,] are row equivalent
matrices, then Nul A = Nul B. That is, the equations

Ax=0 and Bx=0

have the same solution set.

Note what this means! It means that {a+,...,a,} and {b4,...,b,}
have exactly the same linear dependence relationships!
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Theorem:

The pivot columns of a matrix A form a basis of Col A.

Caveat: This means we can use row reduction to identify a basis, but
the vectors we obtain will be from the original matrix A. (As illustrated
in the following example.)
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Find a basis for Col A’
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Find bases for Nul A and Col A
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Section 4.4: Coordinate Systems

We begin with a theorem about uniqueness of linear combinations (of
linearly independent vectors).

Theorem: Let B = {b+,...,b,} be a basis for a vector space V. Then
for each vector x in V, there is a unique set of scalars ¢y, ..., ¢, such
that

X = cib1 + - - cpbp.
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Coordinate Vectors

Definition: Let B = {b¢,...,b,} be an ordered basis of the vector
space V. For each x in V we define the coordinate vector of x
relative to the basis B3 to be the unique vector (cy,...,cp) iINR"
where these entries are the weights x = ¢1by + - - - ¢chb,.

We’'ll use the notation
Cy

Co

Cn
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Example
Let B = {1,t,t2, 3} (in that order) in ;. Determine [p]s where

() P(t) =842+ 68 =3.) ¢ ok +(u)k* « Lk
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(b) p(t) = po + p1t + pat® + pst® p
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Let by — [ : ],bgz [ 1|, and B = {by,bz). Find [x] for
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Coordinates in R”

Note from this example that x = Pg[x]z where Pg is the matrix [bq b].
The matrix Pg is called the change of coordinates matrix for the
basis B (or from the basis 5 to the standard basis).

Let B = {by,...,bn} be an ordered basis of R". Then the change of
coordinate mapping x — [X]z is the linear transformation defined by

[X]s = Pg'x

where the matrix
Pg=[by by --- by
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Example

Lot —{| %

1 ] , [ _11 ]} Determine the matrix P and its inverse.
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Use this to find
(a) the coordinate vector of [ 2
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(b) the coordinate vector of { 1 ]
[j\’\‘\ f—\ [W \ [l \XX-\X:
T -3 |, |
| Q \ |2
®
(c) a vector x whose coordinate vector is [X|z = [ 1 } .
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Figure: R? shown using elementary basis {(1,0), (0, 1)} and with the
alternative basis {(2,1),(-1,1)}.
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