October 7 Math 2306 sec 54 Fall 2015

Section 4.6: Variation of Parameters
Consider the equation $y^{\prime \prime}+y=\tan x$. What happens if we try to find a particular solution having the same form as the right hand side?

$$
\begin{aligned}
& \text { we could try } y_{p}=A \tan x \\
& y_{p}{ }^{\prime}=A \sec ^{2} x \quad \operatorname{might}^{\text {need match } \sec ^{2} x} \\
& \text { perhaps } \quad y_{p}=A \tan x+B \operatorname{Sec}^{2} x \\
& y_{p}^{\prime}=A \sec ^{2} x+2 B \sec ^{2} x \tan x t_{\text {nor wen }} \sec ^{2} x \tan x
\end{aligned}
$$

$\operatorname{tr} \partial y_{p}=A \tan x+B \operatorname{Sec}^{2} x+C \sec ^{2} x \tan x$

$$
y_{p}^{\prime}: A \sec ^{2} x+2 B \sec ^{2} x \tan x+C \sec ^{4} x+2 C \sec ^{2} x \tan ^{2} x
$$

New functions keep appearing this mothod wont work ।

Consider the equation $x^{2} y^{\prime \prime}+x y^{\prime}-4 y=e^{x}$. What happens if we assume $y_{p}=A e^{x}$?

$$
\begin{gathered}
y_{p}^{\prime}=A e^{x}, y_{p}^{\prime \prime}=A e^{x} \\
x^{2} y_{p}^{\prime \prime}+x y_{p}^{\prime}-4 y_{p}=e^{x} \\
x^{2} A e^{x}+x A e^{x}-\underline{\underline{x}}=\underline{=}=e^{x}+0 x^{2} e^{x}+0 x e^{x} \\
A=0 \quad-4 A=1 \\
A=0
\end{gathered}
$$

This requires $A=0=\frac{-1}{4}$ which iswit possible!

We need another method!

For the equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x)=g(x)
$$

suppose $\left\{y_{1}(x), y_{2}(x)\right\}$ is a fundamental solution set for the associated homogeneous equation. We seek a particular solution of the form

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where u_{1} and u_{2} are functions we will determine (in terms of y_{1}, y_{2} and g).

This method is called variation of parameters.

Variation of Parameters: Derivation of y_{p}

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)
$$

Set $\quad y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$

$$
\begin{array}{ll}
y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}+\underbrace{u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}}_{0} & \text { Lets assume } \\
y_{p}^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime} & u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0
\end{array}
$$

Remember that $\quad y_{i}^{\prime \prime}+P(x) y_{i}^{\prime}+Q(x) y_{i}=0, \quad$ for $i=1,2$

$$
\begin{gathered}
y_{p}^{\prime \prime}+P(x) y_{p}^{\prime}+Q(x) y_{p}=g(x) \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}+P(x)\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right) \\
+Q(x)\left(u_{1} y_{1}+u_{2} y_{2}\right)=g(x) \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} \underbrace{\left.y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}\right)}_{0^{\prime \prime}} \\
+\underbrace{\left.y_{2}^{\prime \prime}+P(x) y_{2}^{\prime}+Q(x) y_{2}\right)}_{0_{2}^{\prime \prime}}=g(x)
\end{gathered}
$$

We have 2 equations for ow 2 unknowns

$$
\begin{aligned}
& y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}=0 \\
& y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime}=g(x) \\
& \left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{0}{g(x)}
\end{aligned}
$$

set $w_{1}=\left|\begin{array}{ll}0 & y_{2} \\ g & y_{2}^{\prime}\end{array}\right|, \quad w_{2}=\left|\begin{array}{ll}y_{1} & 0 \\ y_{1}^{\prime} & g\end{array}\right|$

$$
w=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|
$$

This is the Trons kean $w\left(y_{1}, y_{2}\right)$

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{w_{1}}{w}=\frac{-g(x) y_{2}}{w} \\
& u_{2}^{\prime}=\frac{w_{2}}{w}=\frac{g(x) y_{1}}{w}
\end{aligned}
$$

$$
\begin{aligned}
& u_{1}=\int \frac{-y_{2}(x) g(x)}{w(x)} d x \\
& u_{2}=\int \frac{y_{1}(x) g(x)}{w(x)} d x
\end{aligned}
$$

Example:
Solve the ODE $y^{\prime \prime}+y=\tan x$.

$$
g(x)=\tan x
$$

$$
\begin{aligned}
& \text { Find } y_{1, y_{2}: \quad y^{\prime \prime}+y=0 \quad m^{2}+1=0 \Rightarrow \quad \begin{array}{c}
m= \pm i \\
y_{1}=\cos x, y_{2}=\sin x \\
\alpha=0, \beta=1
\end{array}}^{w\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=\cos ^{2} x+\sin ^{2} x=1} \\
& u_{1}=\int \frac{-y_{2} g}{w} d x=\int \frac{-\sin x \tan x}{1} d x
\end{aligned}
$$

$$
\begin{aligned}
u_{1} & =\int-\sin x \tan x d x=\int \frac{-\sin ^{2} x}{\cos x} d x \\
& =-\int \frac{\left(1-\cos ^{2} x\right)}{\cos x} d x=\int(-\sec x+\cos x) d x \\
& =-\ln |\sec x+\tan x|+\sin x \\
u_{2} & =\int \frac{y_{1} g}{w} d x=\int \frac{\cos x \tan x}{1} d x=\int \sin x d x \\
& =-\cos x
\end{aligned}
$$

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =(-\ln |\sec x+\tan x|+\sin x) \cos x+(-\cos x) \sin x \\
& =-\cos x \ln |\sec x+\tan x|+\sin x \cos x-\cos x \sin x \\
y_{\rho} & =-\cos x \ln |\sec x+\tan x|
\end{aligned}
$$

The genera solution to the $D E$ is

$$
y=c_{1} \cos x+c_{2} \sin x-\cos x \ln |\sec x+\tan x|
$$

Example:
Solve the ODE

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{1+x^{2}} . \quad g(x)=\frac{e^{x}}{1+x^{2}}
$$

Find $y_{1}, y_{2}: \quad y^{\prime \prime}-2 y^{\prime}+y=0 \quad m^{2}-2 m+1=0$

$$
(m-1)^{2}=0 \Rightarrow m=1 \text { repeated }
$$

$$
y_{1}=e^{x}, y_{2}=x e^{x}
$$

$$
W=\left|\begin{array}{cc}
e^{x} & x e^{x} \\
e^{x} & e^{x}+x e^{x}
\end{array}\right|=e^{2 x}+x e^{2 x}-x e^{2 x}=e^{2 x}
$$

$$
\begin{aligned}
u_{1} & =\int \frac{-y_{2} g}{w} d x=\int \frac{-x e^{x}\left(\frac{e^{x}}{1+x^{2}}\right)}{e^{2 x}} d x \\
& =\int \frac{-x e^{2 x}}{e^{2 x}\left(1+x^{2}\right)} d x=\int \frac{-x}{1+x^{2}} d x=-\frac{1}{2} \ln \left(1+x^{2}\right) \\
u_{2} & =\int \frac{y_{1} g}{w} d x=\int \frac{e^{x}\left(\frac{e^{x}}{1+x^{2}}\right)}{e^{2 x}} d x \\
& =\int \frac{e^{2 x}}{e^{2 x}\left(1+x^{2}\right)} d x=\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x
\end{aligned}
$$

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =\frac{-1}{2} \ln \left(1+x^{2}\right) e^{x}+\tan ^{-1} x\left(x e^{x}\right)
\end{aligned}
$$

The geneal solution to the ODE is

$$
y=c_{1} e^{x}+c_{2} x e^{x}-\frac{e^{x}}{2} \ln \left(1+x^{2}\right)+x e^{x} \tan ^{-1} x
$$

