Oct 8 Math 2306 sec. 53 Fall 2018

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

We'll consider cases

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g_{1}(x)+g_{2}(x)+\cdots+g_{i}(x)
$$

Using superposition as needed, begin with assumption:

$$
y_{p}=y_{p_{1}}+\cdots+y_{p_{k}}
$$

where $y_{p_{i}}$ has the same general form as $g_{i}(x)$.

Case I: y_{p} as first written has no part that duplicates the complementary solution y_{c}. Then this first form will suffice.

Case II: y_{p} has a term $y_{p_{i}}$ that duplicates a term in the complementary solution y_{c}. Multiply that term (only the $y_{p_{i}}$ at issue) by x^{n}, where n is the smallest positive integer that eliminates the duplication.

Case II Examples
Solve the ODE

$$
y^{\prime \prime}-2 y^{\prime}+y=-4 e^{x}
$$

Find y_{c} : Char. equation $m^{2}-2 m+1=0$

$$
(m-1)^{2}=0 \Rightarrow \begin{aligned}
& m=1 \\
& \text { repeated }
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=e^{x}, y_{2}=x e^{x} \\
& y_{c}=c_{1} e^{x}+c_{2} x e^{x}
\end{aligned}
$$

Find $y_{p}: \quad g(x)=-4 e^{x}$

$$
\begin{aligned}
& y_{p}=A e^{x} \quad \text { (wort work) } \\
& y_{p}=A x e^{x} \quad \text { (wont work) } \\
& y_{p}=A x^{2} e^{x} \quad \text { Correct) }
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime \prime}-2 y^{\prime}+y=-4 e^{x} \\
& y_{p}=A x^{2} e^{x} \\
& y_{p}^{\prime}=A x^{2} e^{x}+2 A x e^{x} \\
& y_{p}^{\prime \prime}=A x^{2} e^{x}+2 A x e^{x}+2 A x e^{x}+2 A e^{x} \\
& y_{p}^{\prime \prime}-2 y_{p}^{\prime}+y_{p}= \\
& A x^{2} e^{x}+4 A x e^{x}+2 A e^{x}-2\left(A x^{2} e^{x}+2 A x e^{x}\right)+A x^{2} e^{x}=-4 e^{x}
\end{aligned}
$$

Collect like terms

$$
x^{2} e^{x}(A-2 A+A)+x e^{x}(4 A-4 A)+e^{x}(2 A)=-4 e^{x}
$$

Matching $\Rightarrow \quad 2 A=-4$

$$
A=-2
$$

so $y_{p}=-2 x^{2} e^{x}$
The generd solution to the ODE is

$$
y=c_{1} e^{x}+c_{2} x e^{x}-2 x^{2} e^{x}
$$

Find the form of the particular soluition

$$
\begin{gathered}
y^{\prime \prime}-4 y^{\prime}+4 y=\sin (4 x)+x e^{2 x} \\
y_{c}: \quad m^{2}-4 m+4=0 \Rightarrow(m-2)^{2}=0 \Rightarrow m=2 \\
y_{1}=e^{2 x}, y_{2}=x e^{2 x} \quad y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}
\end{gathered}
$$

y_{p} : Lat $g_{1}(x)=\sin (4 x)$ and $g_{2}(x)=x e^{2 x}$

$$
y_{p_{1}}=A \sin (4 x)+B \cos (4 x)
$$

(Dost match yo this is correct)

$$
\begin{aligned}
& y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x} \quad g_{2}(x)=x e^{2 x} \\
& y_{p_{2}} \neq\left(C_{x}+D\right) e^{2 x}=C_{x} e^{2 x}+D_{e}^{2 x} \quad \text { (not correct) } \\
& \text { motase yo } \\
& y_{p_{2}} y\left(C_{x}+D\right) x e^{2 x}=C_{x}^{2} e^{2 x}+D_{x} e^{2 x} \quad\left(D_{x} e^{2 x} s+i l 1\right) \\
& \text { matconer yo } \\
& y_{P_{2}}=(C x+D) x^{2} e^{2 x}=C x^{3} e^{2 x}+D x^{2} e^{2 x} \\
& \text { This is } \\
& \text { correct } \\
& y_{p}=A \sin (4 x)+B \cos (4 x)+\left(C x^{3}+D x^{2}\right) e^{2 x}
\end{aligned}
$$

Find the form of the particular soluition

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=\cos x+x^{4}
$$

Find $y c$: Charade en

$$
\begin{gathered}
m^{3}-m^{2}+m-1=0 \\
m^{2}(m-1)+(m-1)=0 \\
\left(m^{2}+1\right)(m-1)=0 \quad \quad \quad \quad l=0 \\
m-1=0 \Rightarrow m=1 \\
\text { or } \quad m^{2}+1=0 \Rightarrow m^{2}=-1 \Rightarrow m= \pm i=0 \pm i \\
y_{1}=e^{x}, y_{2}=e^{0 x} \cos (1 x), y_{3}=e^{0 x} \sin (1 x)
\end{gathered}
$$

$$
y_{c}=c_{1} e^{x}+c_{2} \cos (x)+c_{3} \sin (x)
$$

Let $g_{1}(x)=\cos x \quad$ and $\quad g_{2}(x)=x^{4}$
$y_{p_{1}} \notin A \cos x+B \sin x$ (not correct

$$
y_{p_{1}}=(A \cos x+B \sin x) x=A x \cos x+B x \sin x
$$

(this is correct)
$y_{p_{2}}=C x^{4}+D x^{3}+E x^{2}+F x+G \quad$ This is correct

Ip has the form

$$
y_{p}=A x \operatorname{Cos} x+B x \operatorname{Sin} x+C x^{4}+D x^{3}+E x^{2}+F x+G
$$

Find the form of the particular solution

$$
y^{\prime \prime}-2 y^{\prime}+5 y=e^{x}+7 \sin (2 x)
$$

Find y_{c} : Cherac. egn

$$
\begin{aligned}
m^{2}-2 m+5 & =0 \\
m^{2}-2 m+1-1 & +5=0 \\
(m-1)^{2}+4 & =0 \\
(m-1)^{2} & =-4 \\
m-1 & = \pm 2 i \quad \\
m & =1 \pm 2 i \quad \alpha=1, \beta=2
\end{aligned}
$$

$$
\begin{array}{r}
y_{1}=e^{x} \cos (2 x) \quad y_{2}=e^{x} \sin (2 x) \\
y_{c}=c_{1} e^{x} \cos (2 x)+c_{2} e^{x} \sin (2 x)
\end{array}
$$

Lat $g_{1}(x)=e^{x} \quad, \quad g_{2}(x)=7 \sin (2 x)$
$y_{p_{1}}=A e^{x} \quad$ This works
$y_{p_{2}}=B \sin (2 x)+C \cos (2 x)$ This works

$$
y_{p}=A e^{x}+B \sin (2 x)+C \cos (2 x)
$$

