Oct 8 Math 2306 sec. 53 Fall 2018

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

Recall $y = y_c + y_p$, so we'll have to find both the complementary and the particular solutions!

October 5, 2018

1/33

We'll consider cases

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g_1(x) + g_2(x) + \cdots + g_i(x)$$

Using superposition as needed, begin with assumption:

$$y_p = y_{p_1} + \cdots + y_{p_k}$$

where y_{p_i} has the same **general form** as $g_i(x)$.

Case I: y_p as first written has no part that duplicates the complementary solution y_c . Then this first form will suffice.

Case II: y_{ρ} has a term y_{ρ_i} that duplicates a term in the complementary solution y_c . Multiply **that term** (only the y_{ρ_i} at issue) by x^n , where *n* is the smallest positive integer that eliminates the duplication.

Case II Examples Solve the ODE $y'' - 2y' + y = -4e^{x}$

Find y_c : Char. equation $m^2 - 2m + 1 = 0$ $(m - 1)^2 = 0 \implies m = 1$ repeated

$$y_1 = e^{x}$$
, $y_2 = xe^{x}$
 $y_c = c_1 e^{x} + c_2 xe^{x}$

Find yp: g(x)=-4ex

October 5, 2018 3 / 33

$$y_{P} = A x^{1} e^{x}$$

$$y_{P}' = A x^{2} e^{x} + 2A x e^{x}$$

$$y_{P}'' = A x^{2} e^{x} + 2A x e^{x} + 2A x e^{x} + 2A x e^{x}$$

$$y_{P}'' - 2y_{P}' + y_{P} =$$

$$A x^{1} e^{x} + 4A x e^{x} + 2A e^{x} - 2(A x^{1} e^{x} + 2A x e^{x}) + A x^{1} e^{x} = -4 e^{x}$$

$$Gollect live terms$$

$$x^{2} e^{x} (A - 2A + A) + x e^{x} (4A - 4A) + e^{x} (2A) = -4 e^{x}$$

Matching
$$\Rightarrow$$
 2A=-4
A=-2
So $y_{p}=-2x^{2}e^{x}$
The general solution to the ODE is
 $y=c_{1}e^{x}+c_{2}xe^{x}-2x^{2}e^{x}$

October 5, 2018 5 / 33

୬ବ୍ଦ

◆□→ ◆圖→ ◆恵→ ◆恵→ ○臣

Find the form of the particular soluition

$$y'' - 4y' + 4y = \sin(4x) + xe^{2x}$$

9c:
$$m^{2} - 4m + 4z = 0 \implies (m - 2)^{2} = 0 \implies m = 2$$

$$y_{1} = e^{2x}, \quad y_{2} = xe^{2x} \qquad y_{c} = (1e^{2x} + C_{2}xe^{2x})$$

$$y_{1} = h \quad g_{1}(x) = \sin(4x) \quad a \Rightarrow \quad g_{2}(x) = xe^{2x}$$

$$y_{1} = h \quad g_{1}(x) = \sin(4x) + B(cr(4x)) \qquad (Doesn't motich yc)$$

$$y_{1} = h \quad g_{1}(4x) + B(cr(4x)) \qquad (Doesn't motich yc)$$

$$y_{1} = h \quad g_{1}(4x) + B(cr(4x)) \qquad (Doesn't motich yc)$$

$$y_{1} = h \quad g_{1}(4x) + B(cr(4x)) \qquad (Doesn't motich yc)$$

$$y_{2} = xe^{2x} \qquad y_{3} = xe^{2x}$$

October 5, 2018 6 / 33

2

 $y_c = C_i e^{2x} + C_2 \times e^{2x}$ $\beta_2^{(k)} \times e^{2k}$ (not (orrect) mataes ya $y_{\rho_2} \times (C_{X+D})e^{2x} = C_X e^{2x} + D e^{2x}$ (Dxe Still) natour yc $y_{\rho_{L}} \times (C_{\times} + D) \times e^{i \times t} = C_{\times} e^{i \times t} + D_{\times} e^{i \times t}$ $y_{p_2} = ((x + D)) x^2 e^{2x} = C x^3 e^{2x} + D x^2 e^{2x}$ This is correct $y_p = A S_{in}(y_x) + B(oi(y_x) + (C_x^3 + D_x^2) e^{2x}$

October 5, 2018 7 / 33

イロト イ団ト イヨト イヨト 二日

Find the form of the particular soluition

$$y''' - y'' + y' - y = \cos x + x^4$$

Find ye: Charact egn $m^{3} - m^{2} + m - 1 = 0$ $M^{2}(m-1) + (m-1) = 0$ d=0 6 28=1 $(m^{2}+1)(m-1) = 0$ M-1=0 =) M=1 m2+1=0 = m2=-1 = m= ti= 0±i 61 $y_1 = e^{x}$, $y_2 = e^{0x} Cos(1x)$, $y_3 = e^{0x} S_{1n}(1x)$

- 3

$$y_{c} = C_{1} \overset{e}{\in} + C_{2} \operatorname{Gos}(x) + C_{3} \operatorname{Sin}(x)$$
Let $g_{1}(x) = \operatorname{Gos} x$ and $g_{2}(x) = \chi^{4}$

$$y_{P_{1}} \overset{e}{\times} A \operatorname{Gos} x + B \operatorname{Sin} x \qquad (not \ correct$$

$$y_{P_{1}} = (A \operatorname{Gos} x + B \operatorname{Sin} x) x = A x \operatorname{Gos} x + B x \operatorname{Sin} x$$

$$(this \ is \ correct)$$

$$y_{P_{2}} = C \chi^{4} + D \chi^{3} + E \chi^{2} + F \chi + G \qquad This \ is \ correct$$

yp has the form

yp= Ax Cosx + Bx Sinx + Cx"+ Dx"+ Ex"+ Fx + G

October 5, 2018 11 / 33

Find the form of the particular soluition

$$y'' - 2y' + 5y = e^x + 7\sin(2x)$$

Find ye: Cherac. egn $M^{2} - ZM + S = 0$ $m^2 - 2m + |-|+5 = 0$ $(m-1)^{2}+4=0$ $(m-1)^2 = -4$ M-1 = ± 20 d=1, B=2 m= 1 ± 21 - 34 October 5, 2018 12/33

 $y_1 = e^{x} \cos(2x)$ $y_2 = e^{x} \sin(2x)$ $J_{L} = C_{1} \stackrel{\times}{e} C_{01}(2x) + C_{n} \stackrel{\times}{e} S_{1n}(2x)$ $g_{2}(x) = 7 Sin(2x)$ Let g. (x) = e yp. = Ae This works This works ypz = BSin(2x) + C Cor(2x) $y_p = Ae^{\times} + BSin(2x) + CCus(2x)$

October 5, 2018 13 / 33