October 9 Math 2306 sec 54 Fall 2015
Section 4.6: Variation of Parameters
Solve the ODE

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=\ln x
$$

given that $y_{c}=c_{1} x^{2}+c_{2} x^{-2}$ is the complementary solution.

$$
\begin{array}{rlr}
y_{1} & =x^{2}, y_{2}=x^{-2} & \text { Standard form: } \\
w & =\left|\begin{array}{cc}
x^{2} & x^{-2} \\
2 x & -2 x^{-3}
\end{array}\right| & y^{\prime} \frac{1}{x} y^{\prime}-\frac{4}{x^{2}} y=\frac{\ln x}{x^{2}} \\
& =x^{2}\left(-2 x^{-3}\right)-2 x\left(x^{-2}\right)=-4 x^{-1}=\frac{-4}{x}
\end{array}
$$

$$
\begin{aligned}
u_{1} & =\int \frac{-y_{2} g}{w} d x=\int \frac{-x^{-2}\left(\frac{\ln x}{x^{2}}\right)}{-4 / x} d x=\frac{1}{4} \int x \cdot x^{-2} \ln x \cdot x^{-2} d x \\
& =\frac{1}{4} \int x^{-3} \ln x d x \\
& =\frac{1}{4}\left[\frac{-x^{-2}}{2} \ln x+\frac{1}{2} \int x^{-3} d x\right] \quad \operatorname{lnt} \text { by parts } \\
& \quad \int w d v=w v-\int v d w \\
& =\frac{1}{4}\left[\frac{-x^{-2}}{2} \ln x-\frac{1}{4} x^{-2}\right]
\end{aligned} \quad \begin{array}{ll}
w=\ln x \quad d w=\frac{1}{x} d x
\end{array}
$$

$$
\begin{aligned}
u_{2} & =\int \frac{y_{1} g}{w} d x=\int \frac{x^{2}\left(\frac{\ln x}{x^{2}}\right)}{-4 / x} d x= \\
& =\frac{-1}{4} \int x \ln x d x \quad \ln t \text { bs pouts } \\
& =\frac{-1}{4}\left[\frac{x^{2}}{2} \ln x-\frac{1}{2} \int x d x\right] \quad v=\frac{x^{2}}{2} \quad d v=\frac{1}{x} d x \\
& =\frac{-1}{4}\left[\frac{x^{2}}{2} \ln x-\frac{1}{4} x^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4}\left[\frac{-x^{-2}}{2} \ln x-\frac{x^{-2}}{4}\right] x^{2}-\frac{1}{4}\left[\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}\right] x^{-2} \\
& =-\frac{1}{8} \ln x-\frac{1}{16}-\frac{1}{8} \ln x+\frac{1}{16} \\
& =\frac{-2}{8} \ln x=\frac{-1}{4} \ln x
\end{aligned}
$$

The greed solution to the ODE is

$$
y=c_{1} x^{2}+c_{2} x^{-2}-\frac{1}{4} \ln x
$$

Solve the IVP

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=\ln x, \quad y(1)=-1, \quad y^{\prime}(1)=0
$$

From before

$$
\begin{aligned}
y & =c_{1} x^{2}+c_{2} x^{-2}-\frac{1}{4} \ln x \\
y^{\prime} & =2 c_{1} x-2 c_{2} x^{-3}-\frac{1}{4} \cdot \frac{1}{x} \\
y(1) & =c_{1}(1)^{2}+c_{2}(1)^{2}-\frac{1}{4} \ln 1=-1 \Rightarrow c_{1}+c_{2}=-1 \\
y^{\prime}(1) & =2 c_{1}(1)-2 c_{2}(1)^{-3}-\frac{1}{4} \cdot \frac{1}{1}=0 \Rightarrow 2 c_{4}-2 c_{2}=\frac{1}{4}
\end{aligned}
$$

$$
\begin{array}{rlrl}
2 c_{1}+2 c_{2} & =-2 \\
2 c_{1}-2 c_{2} & =\frac{1}{4} \\
\frac{4 c_{1}}{}=\frac{-7}{4}
\end{array}>c_{1}=\frac{-7}{16} \quad c_{2}=-1-c_{1}, ~=-1+\frac{7}{16}=\frac{-9}{16}
$$

The solution to the IVP is

$$
y=\frac{-7}{16} x^{2}-\frac{9}{16} x^{-2}-\frac{1}{4} \ln x
$$

Section 4.9: Solving a System by Elimination

Consider the pair of differential equations

$$
\begin{aligned}
\frac{d x}{d t}+y & =t \\
x-2 \frac{d y}{d t} & =1
\end{aligned}
$$

This is a linear system of differential equations. It is linear in each of the two dependent variables (x and y). A solution would consist of a pair of functions $(x(t), y(t))$ that satisfied both equations simultaneously.

Linear System: IVP

A first order, constant coefficient system IVP has the form

$$
\begin{array}{ll}
\frac{d x}{d t}=a_{11} x+a_{12} y+f(t), & x\left(t_{0}\right)=x_{0} \\
\frac{d y}{d t}=a_{21} x+a_{22} y+g(t), & y\left(t_{0}\right)=y_{0}
\end{array}
$$

If $f(t)=g(t)=0$, the system is homogeneous. Otherwise it is nonhomogeneous.

NOTE: there are two initial conditions, one for each dependent variable. Hence, the solution to the ODE part of the problem must be a 2-parameter family.

In general, for m dependent variables each satisfying an $n^{\text {th }}$ order DE, there will be $m n$ parameters. Here, $m=2$ and $n=1$.

Operator Notation

We'll introduce the following operator notation that will allow us to manipulate the system as though it were algebraic. Define the operator D and the operator notation via

$$
D y=\frac{d y}{d t}, \quad D^{2} y=D(D y)=\frac{d^{2} y}{d t^{2}}, \quad D^{3} y=D\left(D^{2} y\right)=\frac{d^{3} y}{d t^{3}}
$$

Example:

Write the system of equations using the operator notation.

$$
\begin{array}{r}
\frac{d x}{d t}+y=t \\
x-2 \frac{d y}{d t}=1
\end{array}
$$

$$
\begin{aligned}
D x+y & =t \\
x-2 D y & =1
\end{aligned}
$$

Example:

Write the system of equations using the operator notation.

$$
\begin{aligned}
\frac{d^{2} x}{d t^{2}}+2 x-\frac{d y}{d t} & =\cos 2 t \\
3 \frac{d y}{d t}+\frac{d x}{d t} & =-x+4 y-t e^{t} \\
D^{2} x+2 x-D y & =\cos 2 t \\
3 D y+D x & =-x+4 y-t e^{t} \\
\left(D^{2}+2\right) x-D y & =\cos 2 t \\
(D+1) x+(3 D-4) y & =-t e^{t}
\end{aligned}
$$

Solving a System by Elimination

Remark: The current method is for linear systems with constant coefficients only.

- Write the system using the operator notation. Line up like variables so that the system appears as an algebraic system.
- Eliminate variables using standard operations. Keep in mind that "multiplication" by D is differentiation.
- Obtain an equation (or equations) in each variable separately, and solve using any applicable method.
- Use back substitution as needed to obtain solutions for all dependent variables.

Solve the System by Elimination

$$
\begin{array}{ll}
\frac{d x}{d t}=4 x+7 y & D_{x}=4 x+7 y \Rightarrow D x-4 x-7 y=0 \\
\frac{d y}{d t}=x-2 y & D_{y}=x-2 y \Rightarrow-x+D y+2 y=0
\end{array}
$$

$$
\begin{array}{r}
(D-4) x-7 y=0 \\
-x+(D+2) y=0
\end{array}
$$

* Multiply equation 2 by $D-4$ and ald

$$
\begin{aligned}
& (D-4) x-7 y=0 \\
- & (D-4) x+(D-4)(D+2) y=(D-4) \cdot 0=0
\end{aligned}
$$

$$
\begin{aligned}
& -7 y+(D-4)(D+2) y=0 \\
& {\left[-7+D^{2}-4 D+2 D-8\right] y=0} \\
& \quad\left(D^{2}-2 D-15\right) y=0 \Rightarrow y^{\prime \prime}-2 y^{\prime}-15 y=0
\end{aligned}
$$

$2^{\text {n! }}$ orden lineer constant creff. egn (see 4.3)

$$
\begin{aligned}
& m^{2}-2 m-15=0 \Rightarrow(m-5)(m+3)=0 \\
& m_{1}=5, m_{2}=-3 \\
& y=c_{1} e^{5 t}+c_{2} e^{-3 t}
\end{aligned}
$$

We'se rot dune. we still meed to find $x(t)$.
well pick this yo on Monday.

