October 9 Math 2306 sec 54 Fall 2015

Section 4.6: Variation of Parameters

Solve the ODE
x2y" + xy' — 4y =Inx,

given that y. = ¢1x° + c,x 2 is the complementary solution.
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Solve the IVP

XZy//—|-xy’_4y:|n)(7 y(1) = -1,
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Section 4.9: Solving a System by Elimination

Consider the pair of differential equations

ay
X—ZE = 1

This is a linear system of differential equations. It is linear in each
of the two dependent variables (x and y). A solution would consist of
a pair of functions (x(t), y(t)) that satisfied both equations
simultaneously.
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Linear System: IVP

A first order, constant coefficient system IVP has the form

ax
o = anxtany (1), x(b)=x
d
F}; = anx+any+9(t), yl) =y

If f(t) = g(t) = 0, the system is homogeneous. Otherwise it is
nonhomogeneous.

NOTE: there are two initial conditions, one for each dependent
variable. Hence, the solution to the ODE part of the problem must
be a 2-parameter family.

In general, for m dependent variables each satisfying an n'” order DE,
there will be mn parameters. Here, m=2and n=1.
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Operator Notation

We'll introduce the following operator notation that will allow us to
manipulate the system as though it were algebraic.
Define the operator D and the operator notation via

d
Dy = 7};, D?y = D(Dy) =

d2
Sa Dy=D(D¥) =%
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Example:

Write the system of equations using the operator notation.
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Example:

Write the system of equations using the operator notation.

a?x dy
—— 42X — = = 2
a2 + 2x o cos 2t
dy ax t
SE + E = —X-+ 4y te
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Solving a System by Elimination

Remark: The current method is for linear systems with constant
coefficients only.

» Write the system using the operator notation. Line up like
variables so that the system appears as an algebraic system.

» Eliminate variables using standard operations. Keep in mind that
"multiplication” by D is differentiation.

» Obtain an equation (or equations) in each variable separately, and
solve using any applicable method.

» Use back substitution as needed to obtain solutions for all
dependent variables.
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Solve the System by Elimination

Dx-Yx -3y =0
dd)zf = 4x+7y Dy = UxtFy 2 DX-X 7%
. - - -f>\a +2 =0

dt

(‘D’H) X - 1\? = 0 ¥ ;’\uﬁ.}‘?\3” e‘su"t‘\"“"\
- x +(p¥2)y =0 2 by DU on
2dd
(D-M)x - 3}y o0

- (D-Y)x ¢ (D*%(th)‘g -p0=0
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