Solutions to Review for Exam I

MATH 1112 sections 54 Spring 2019
Sections Covered in Bittinger: 1.1, 9.1, 1.2, 2.2, 2.3, 2.1 (In Miller: 2.1, 9.1, 2.2, 2.3, 2.8, 2.7)
Calculator Policy: There will be NO calculator use on this exam. You are strongly encouraged to prepare for the exam without relying on a calculator.

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) How do you complete the square? Come up with your own example to illustrate the process. I'm not going to put words in your mouth.
(2) Each of the equations defines a circle in the plane. For each one, identify the center and the radius. Produce a plot on the graph paper provided.

1. $(x+3)^{2}+(y-1)^{2}=4 \quad$ Center $(-3,1)$, radius 2
2. $x^{2}+y^{2}+2 y=8 \quad$ Center $(0,-1)$, radius 3
3. $x^{2}+y^{2}-2 x-4 y+4=0 \quad$ Center $(1,2)$, radius 1
4. $x^{2}+y^{2}=6 y-4 x-4 \quad$ Center $(-2,3)$, radius 3

(3) For each linear system of equations, determine if the system is consistent independent, consistent dependent, or inconsistent. If consistent, solve the system and give a description of the solution.
(a)

$$
\begin{aligned}
& 3 x+4 y=1 \\
& 2 x-y=3
\end{aligned}
$$

(c)
(b)

$$
2 x+2 y=7
$$

$$
3 x=14-3 y
$$

$$
\begin{equation*}
-2 x-7 y=6 \tag{d}
\end{equation*}
$$

$$
x-3 y=-2
$$

$x-3 y=-2$
(d)

$$
3 x-2 y=5
$$

$$
4 y=6 x-10
$$

(a) Consistent independent $x=\frac{13}{11}, y=-\frac{7}{11}$; (b) inconsistent; (c) consistent independent $x=-\frac{32}{13}, y=-\frac{2}{13} ;$ (d) consistent dependent, all solutions live on the line $y=\frac{1}{2}(3 x-5)$
(4) Aaron's boat travels 45 miles downstream in 3 hours. The return trip upstream takes 5 hours. Find the speed of the boat in still water, and the speed of the current. (Hint: Create a linear system in two variables. For example, let x be the speed of the boat in still water and y be the speed of the current. When traveling downstream, the speed is $x+y$, and traveling upstream it is $x-y$. Recall that distance $=$ rate times time. Both trips are the same 45 mile distance.) The equations to solve are $45=3(x+y)$ and $45=5(x-y)$. The still water speed of the boat $x=12 \mathrm{mph}$, and the speed of the current $y=3 \mathrm{mph}$.
(5) Use the graph of $y=f(x)$ shown to answer the following questions.

1. Evaluate $f(-1)=1$
2. On which intervals is f increasing? $(-4,-2)$ and $(2,5 / 2)$
3. Evaluate $f(1)=-2$
4. Find all solutions of the equation $f(x)=0$. There are two solutions, -3 and 4 .
5. How many solutions are there to the equation $f(x)=\frac{1}{2}$? There appear to be three, one between -3 and -2 , another between -2 and -1 , and a third between 3 and 4 .
6. Identify an interval over which f is constant. The largest is $(-1,1)$.
7. Evaluate $f(f(-3))$. How about $f(f(f(-3)) ? f(f(-3))=f(0)=1$ and $f(f(f(-3))=$ $f(f(0))=f(1)=-2$
(6) Find the domain of each function. Express the answer using interval notation.
(a) $\quad f(x)=\frac{1}{x^{2}-4} \quad(-\infty,-2) \cup(-2,2) \cup(2, \infty)$
(b) $H(t)=\sqrt{1-|t|} \quad[-1,1]$
(c) $g(v)=\frac{1}{v^{2}+3} \quad(-\infty, \infty)$
(7) Let $f(x)=2 x^{2}-3 x$. Evaluate each of the following.
8. $f(2)=2$
9. $f(-2)=14$
10. $f(r)=2 r^{2}-3 r$
11. $f(4 r)=32 r^{2}-12 r$
12. $f(x+h)=2 x^{2}+4 x h+2 h^{2}-3 x-3 h$
13. $f(x+h)-f(x)=4 x h+2 h^{2}-3 h$
14. $\frac{f(x+h)-f(x)}{h}=4 x+2 h-3$
(8) Consider the functions

$$
f(x)=\sqrt{x^{2}+1}, \quad g(x)=\frac{1}{x-1}, \quad \text { and } \quad h(x)=3 x^{2}
$$

Evaluate each expression. Simplify if possible.

1. $(f+g)(0)=0$
2. $\left(\frac{h}{f}\right)(1)=\frac{3}{\sqrt{2}}$
3. $(\mathrm{hg})(2)=12$
4. $(f \circ g)(0)=\sqrt{2}$
5. $(g \circ f)(0)=$ undefined
6. $(h \circ f)(2)=15$
7. $(f \circ f)(1)=\sqrt{3}$
8. $(f \circ g)(x)=\sqrt{\frac{x^{2}-2 x+2}{(x-1)^{2}}}$
9. $(h \circ g)(x)=\frac{3}{(x-1)^{2}}$
