Review for Exam I

MATH 1113 sections 51 \& 52 Fall 2018

Sections Covered: 1.3, 1.4, 1.2, 2.2, 2.3, 2.1, 2.5
Calculator Policy: There will be NO calculator use on this exam. You are strongly encouraged to prepare for the exam without relying on a calculator.

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) Use the graph of $y=f(x)$ shown to answer the following questions.

1. Evaluate $f(-1)$
2. On which intervals is f increasing?
3. Evaluate $f(1)$
4. Find all solutions of the equation $f(x)=0$.
5. How many solutions are there to the equation $f(x)=\frac{1}{2}$?
6. Identify an interval over which f is constant.
7. Evaluate $f(f(-3))$. How about $f(f(f(-3))$?
(2) Find the domain of each function. Express the answer using interval notation.
(a) $\quad f(x)=\frac{1}{x^{2}-4}$
(b) $H(t)=\sqrt{1-|t|}$
(c) $g(v)=\frac{1}{v^{2}+3}$
(3) Let $f(x)=2 x^{2}-3 x$. Evaluate each of the following.
8. $f(2)$
9. $f(-2)$
10. $f(r)$
11. $f(4 r)$
12. $f(x+h)$
13. $f(x+h)-f(x)$
14. $\frac{f(x+h)-f(x)}{h}$
(4) Consider the functions

$$
f(x)=\sqrt{x^{2}+1}, \quad g(x)=\frac{1}{x-1}, \quad \text { and } \quad h(x)=3 x^{2}
$$

Evaluate each expression. Simplify if possible.

1. $(f+g)(0)$
2. $\left(\frac{h}{f}\right)$
(1)
3. $(h g)(2)$
4. $(f \circ g)(0)$
5. $(g \circ f)(0)$
6. $(h \circ f)(2)$
7. $(f \circ f)(1)$
8. $(f \circ g)(x)$
9. $(h \circ g)(x)$
(5) A company wants to manufacture widgets. There is a one time expense of $\$ 3000$ for the manufacturing equipment, and it costs $\$ 10$ in material and labor to produce each widget.
(a) Write a linear function $C(x)$ representing the cost in dollars associated with producing x widgets.
(b) What is the cost to produce 250 widgets?
(c) Suppose the widgets will sell for $\$ 17.50$ each. How many widgets have to be sold to break even? (Break even means expenses equal revenue.)
(6) Consider the two lines L_{1} and L_{2} given below.

$$
L_{1} \quad 2 x-y=3 \quad \text { and } \quad L_{2} \quad 16 x+4 y=1
$$

1. Write L_{1} and L_{2} in slope intercept form.
2. Determine if L_{1} and L_{2} are parallel, perpendicular, or neither.
3. Find a line parallel to L_{1} that passes through the point $(3,7)$.
4. Find a line perpendicular to L_{2} that passes through the origin.
5. Find all numbers k such that the line through $(1, k)$ and $(0,4)$ is parallel to L_{1}.
6. Find all numbers k such that the line through the points $(1, k)$ and $(k, 2)$ is perpendicular to L_{2}.
(7) Use transformations to produce a rough plot of each of the following. Label key points (such as intercepts)
(a) $y=\sqrt{x-2}$
(b) $y=\sqrt{x}-2$
(c) $y=(x+3)^{3}+1$
(d) $y=-\sqrt{x+2}$

