## Solutions to Review for Exam I

## MATH 1113 sections 51 \& 52 Fall 2018

Sections Covered: 1.3, 1.4, 1.2, 2.2, 2.3, 2.1, 2.5
Calculator Policy: There will be NO calculator use on this exam. You are strongly encouraged to prepare for the exam without relying on a calculator.

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) Use the graph of $y=f(x)$ shown to answer the following questions.


1. Evaluate $f(-1)=1$
2. On which intervals is $f$ increasing? $(-4,-2)$ and $(2,5 / 2)$
3. Evaluate $f(1)=-2$
4. Find all solutions of the equation $f(x)=0$. There are two solutions, -3 and 4 .
5. How many solutions are there to the equation $f(x)=\frac{1}{2}$ ? There appear to be three, one between -3 and -2 , another between -2 and -1 , and a third between 3 and 4 .
6. Identify an interval over which $f$ is constant. The largest is $(-1,1)$.
7. Evaluate $f(f(-3))$. How about $f(f(f(-3)) ? f(f(-3))=f(0)=1$ and $f(f(f(-3))=$ $f(f(0))=f(1)=-2$
(2) Find the domain of each function. Express the answer using interval notation.
(a) $\quad f(x)=\frac{1}{x^{2}-4} \quad(-\infty,-2) \cup(-2,2) \cup(2, \infty)$
(b) $\quad H(t)=\sqrt{1-|t|} \quad[-1,1]$
(c) $g(v)=\frac{1}{v^{2}+3} \quad(-\infty, \infty)$
(3) Let $f(x)=2 x^{2}-3 x$. Evaluate each of the following.
8. $f(2)=2$
9. $f(-2)=14$
10. $f(r)=2 r^{2}-3 r$
11. $f(4 r)=32 r^{2}-12 r$
12. $f(x+h)=2 x^{2}+4 x h+2 h^{2}-3 x-3 h$
13. $f(x+h)-f(x)=4 x h+2 h^{2}-3 h$
14. $\frac{f(x+h)-f(x)}{h}=4 x+2 h-3$
(4) Consider the functions

$$
f(x)=\sqrt{x^{2}+1}, \quad g(x)=\frac{1}{x-1}, \quad \text { and } \quad h(x)=3 x^{2}
$$

Evaluate each expression. Simplify if possible.

1. $(f+g)(0)=0$
2. $\left(\frac{h}{f}\right)(1)=\frac{3}{\sqrt{2}}$
3. $(h g)(2)=12$
4. $(f \circ g)(0)=\sqrt{2}$
5. $(g \circ f)(0)=$ undefined
6. $(h \circ f)(2)=15$
7. $(f \circ f)(1)=\sqrt{3}$
8. $(f \circ g)(x)=\sqrt{\frac{x^{2}-2 x+2}{(x-1)^{2}}}$
9. $(h \circ g)(x)=\frac{3}{(x-1)^{2}}$
(5) A company wants to manufacture widgets. There is a one time expense of $\$ 3000$ for the manufacturing equipment, and it costs $\$ 10$ in material and labor to produce each widget.
(a) Write a linear function $C(x)$ representing the cost in dollars associated with producing $x$ widgets. $C(x)=3000+10 x$
(b) What is the cost to produce 250 widgets? $C(250)=5500$, so the cost is $\$ 5500$.
(c) Suppose the widgets will sell for $\$ 17.50$ each. How many widgets have to be sold to break even? The break even production is 400 widgets. Note that if $x$ sell, the revenue is $17.5 x$. Setting revenue equal to cost gives the equation for the break even $x$ value $17.5 x=3000+10 x$.
(6) Consider the two lines $L_{1}$ and $L_{2}$ given below.

$$
L_{1} \quad 2 x-y=3 \quad \text { and } \quad L_{2} \quad 16 x+4 y=1
$$

1. Write $L_{1}$ and $L_{2}$ in slope intercept form. $L_{1}$ is $y=2 x-3$ and $L_{2}$ is $y=-4 x+\frac{1}{4}$
2. Determine if $L_{1}$ and $L_{2}$ are parallel, perpendicular, or neither. They are neither (slopes are not equal nor do they muliply to -1 ).
3. Find a line parallel to $L_{1}$ that passes through the point $(3,7) . y=2 x+1$
4. Find a line perpendicular to $L_{2}$ that passes through the origin. $y=\frac{x}{4}$
5. Find all numbers $k$ such that the line through $(1, k)$ and $(0,4)$ is parallel to $L_{1}$. Solve $2=\frac{4-k}{0-1}$ to get $k=6$.
6. Find all numbers $k$ such that the line through the points $(1, k)$ and $(k, 2)$ is perpendicular to $L_{2}$. Solve the equation $\frac{1}{4}=\frac{2-k}{k-1}$ to get $k=\frac{9}{5}$.
(7) Use transformations to produce a rough plot of each of the following. Label key points (such as intercepts)
(a) $y=\sqrt{x-2}$
(b) $y=\sqrt{x}-2$
(c) $y=(x+3)^{3}+1$
(d) $y=-\sqrt{x+2}$




