Review for Exam I

MATH 1190
Sections Covered: 1.1, 1.2, 1.3, 1.4, 1.5

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) Use the graph of $y=f(x)$ shown to answer the following questions.

1. Evaluate if possible $\lim _{x \rightarrow 1^{-}} f(x)$
2. Evaluate if possible $\lim _{x \rightarrow 1^{+}} f(x)$
3. Evaluate if possible $\lim _{x \rightarrow 1} f(x)$
4. Evaluate if possible $f(1)$
5. Evaluate if possible $\lim _{x \rightarrow 3} f(x)$
6. Evaluate if possible $\lim _{x \rightarrow 2^{+}} f(x)$
7. Is f continuous from the left at 1 ? (Why/why not?)
8. Is f continuous from the right at 1 ? (Why/why not?)
9. Does f have a removable discontinuity at 2 ? (Why/why not?)
(2) Evaluate each limit if possible using limit laws.
(a) $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x^{2}-2 x-8}$
(b) $\lim _{t \rightarrow 0} \frac{e^{3 t}}{t+1}$
(c) $\lim _{\theta \rightarrow \frac{\pi}{2}}(\cos \theta-\sin \theta)$
(d) $\lim _{x \rightarrow 3} \frac{\sqrt{4-x}-1}{x-3}$
(e) $\lim _{x \rightarrow 2} \frac{\frac{1}{x}-\frac{1}{2}}{x-2}$
(3) Let $f(x)=\sqrt{x}$. (a) Set up the ratio $\frac{f(x)-f(1)}{x-1}$. Then use limit laws and any necessary algebra to evaluate the limit

$$
\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}
$$

(4) Determine whether the given function is continuous at the indicated point c. Justify your claims.
(a) $f(x)=\left\{\begin{array}{ll}\frac{\sin x}{2 x}, & x \neq 0 \\ \frac{1}{2}, & x=0\end{array} \quad c=0\right.$
(b) $f(x)=\left\{\begin{array}{ll}(x-1)^{2}, & x \leq 1 \\ \tan \left(\frac{\pi x}{4}\right), & x>1\end{array} \quad c=1\right.$
(5) Evaluate each limit using appropriate limit statements.
(a) $\lim _{x \rightarrow 0} \frac{\sin (2 x)}{\sin (3 x)}$
(b) $\lim _{t \rightarrow 0} 2 t \csc (4 t)$
(c) $\lim _{\theta \rightarrow 0} \frac{\cos (2 \theta)}{\cos (7 \theta)}$
(6) Evaluate each limit if possible. If a limit is ∞ or $-\infty$, give the appropriate infinity as the answer. If the limit doesn't exist, just state that it DNE with some justification.
(a) $\lim _{x \rightarrow 3^{-}} \frac{1-x}{x-3}$
(b) $\lim _{t \rightarrow 0} \frac{1}{|t|}$
(c) $\lim _{\theta \rightarrow \pi^{+}} \tan \left(\frac{\theta}{2}\right)$
(d) $\lim _{x \rightarrow 0} \csc x$
(7) Evaluate each limit at infinity. If it doesn't exist, justify this claim.
(a) $\lim _{x \rightarrow-\infty} \frac{e^{x}}{x}$
(b) $\lim _{t \rightarrow \infty} \frac{3 t^{3}+2 t^{2}+t}{1-t^{3}}$
(c) $\lim _{x \rightarrow \infty} \sin x$
(8) Use the definition of the derivative to find $f^{\prime}(2)$ (i.e. set up and evaluate a limit).
(a) $f(x)=\sqrt{x}$
(b) $\quad f(x)=x^{3}$
(c) $\quad f(x)=(x-1)^{2}$

