Review for Exam I

Calculus II sec. 001 Summer 2015

Sections Covered: 4.8, 5.2, 5.3, 5.4, 5.5, 5.6, 6.1
This practice exam is intended to give you a rough idea of the types of problems you can expect to encounter. Nothing else is intended or implied.
(1) Evaluate the given integrals.
(a) given $\int_{0}^{1} g(x) d x=1$, and $\int_{0}^{2} g(x) d x=7, \quad$ evaluate $\int_{1}^{2} g(x) d x$
(b) $\int_{-1}^{2}\left(x^{2}+3 x-1\right) d x$
(c) $\quad \int \tan ^{3} \frac{x}{2} \sec ^{2} \frac{x}{2} d x$
(d) $\int_{0}^{\frac{\pi}{6}} \frac{\sin 2 x}{\cos ^{4} 2 x} d x$
(e) $\int_{1}^{4} \frac{d y}{2 \sqrt{y}(1+\sqrt{y})^{2}}$
(f) $\int \frac{x^{3}}{\sqrt{x^{4}+1}} d x$
(g) $\int(\sec x-\csc (2 x)) d x$
(h) $\int_{-3}^{-1} \frac{x-4}{x^{2}} d x$
(i) $\int 3 \cot w d w$
(j) $\int\left(\frac{1}{\sqrt{1-x^{2}}}+\frac{2}{1+4 x^{2}}\right) d x$
(k) $\int \frac{2 x+1}{x^{2}+x+2} d x$
(2) Evaluate each integral by interpreting it in terms of areas.
(a) $\int_{0}^{4}-\sqrt{16-x^{2}} d x$
(b) $\quad \int_{0}^{2} f(x) d x$ where $f(x)= \begin{cases}1, & x \leq 1 \\ x, & x>1\end{cases}$
(3) Find the area bound between the indicated curves.
(a) $x=2 y^{2}, \quad x=0, \quad$ and $\quad y=3$.
(b) $y=\cos x, \quad y=\sin x, \quad$ for $\quad 0 \leq x \leq \frac{\pi}{2}$
(c) $y=2-x^{2}$ and $y=x$
(4) Evaluate each derivative.
(a) $\frac{d}{d x} \int_{x}^{x^{3}} \tan t d t$
(b) $\frac{d}{d x} \int_{\sin x}^{\cos x} \frac{d t}{t}$
(5) Explain why each statement below is false.
(a) If f is continuous on $[a, b]$, then

$$
\frac{d}{d x}\left(\int_{a}^{b} f(x) d x\right)=f(x)
$$

(b) If $\int_{0}^{1} f(x) d x=0$, then $f(x)=0$ for all $0 \leq x \leq 1$.
(c) If f is continuous on $[a, b]$, then f has a derivative on $[a, b]$.
(d) If f is continuous on $[a, b]$, then $\int_{a}^{b} x f(x) d x=\frac{x^{2}}{2} \int_{a}^{b} f(x) d x$.
(6) A particle moves along the x-axis; it's acceleration $a(t)$, initial velocity $v(0)$, and initial position $s(0)$ are given by

$$
a(t)=2 \cos t \quad \mathrm{ft} / \mathrm{s}^{2}, \quad v(0)=2 \quad \mathrm{ft} / \mathrm{s}, \quad \text { and } \quad s(0)=0 \quad \mathrm{ft} .
$$

Find the position $s(t)$ for all $t>0$.
(7) If f is continuous on $[a, b]$ and $m \leq f(x) \leq M$ on this interval, then $m(b-a) \leq \int_{a}^{b} f(x) d x \leq$ $M(b-a)$. Use this property to show that

$$
0 \leq \int_{-1}^{1 / 2}\left(1-x^{2}\right) d x \leq \frac{3}{2}
$$

