Solutions to Review for Exam I
Calculus II sec. 001 Summer 2015

Sections Covered: 4.8, 5.2,5.3,5.4,5.5,5.6, 6.1
This practice exam is intended to give you a rough idea of the types of problems you can expect to
encounter. Nothing else is intended or implied.

(1) Evaluate the given integrals.
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(2) Evaluate each integral by interpreting it in terms of areas.
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(3) Find the area bound between the indicated curves.
@ x=2°% 2=0, and y=3. Area=18
(b) y=cosx, y=sinz, for 0<z< g Area = 2v/2—2

() y=2—2* and y=2x, Area=
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(4) Evaluate each derivative.
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(5) Explain why each statement below is false.

(a) If f is continuous on [a, b], then

d b
. ( / f(x) dx) = f(z). (Note that the definite integral is a constant.)
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(b) If fol f(x)dr = 0, then f(z) = 0 forall 0 < x < 1. (Consider the counter example
flz)=1/2 -2z

(c) If f is continuous on [a, b], then f has a derivative on [a, b]. (Consider the counter example

f(z) = |z|on [-1,1].)

(d) If f is continuous on |[a, b], then fab rf(x)de = % ff f(x)dx. (This is a pretty egregious
error. Only constant factors may be factored out. Note that the expression on the left is a
number, that on the right would be a number times 22.)

(6) A particle moves along the z-axis; it’s acceleration a(t), initial velocity v(0), and initial position
5(0) are given by

a(t) =2cost ft/s?>, v(0)=2 ft/s, and s(0)=0 ft

Find the position s(t) for all ¢ > 0. s(t) = —2cost + 2t + 2



(7) If f is continuous on [a,b] and m < f(z) < M on this interval, then m(b — a) < fab f(z)dx <

M (b — a). Use this property to show that
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Use the extreme value theorem, and show that for —1 < z <



