Review for Exam I

MATH 2306

Sections Covered: 1, 2, 3, 4¹

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.

- (1) For each equation, specify all independent and dependent variables. Identify the given equation as Linear or Non-linear and specify the order.
- (a) $\frac{dy}{dt} + \frac{dx}{dt} = x^2 + y^2$ independent t, dependent x, y, first order, nonlinear
- (b) $x^3y''' 2x^2y'' + 7y = \ln x$ independent x, dependent y, third order, linear
- (c) $e^x dy = x^2 y dx$ independent/dependent could be either, first order, nonlinear in x, linear in y
- (2) Verify that the given expression defines a solution to the ODE. State whether the solution is given implicitly or explicitly.
- (a) $\frac{d^2y}{dx^2} + y = e^x$, $y(x) = 2\cos x + \frac{1}{2}e^x$ plug it in, explicit
- (b) $\frac{dy}{dx} = \frac{y}{e^x}$ $e^{-x} + \ln|y| = 1$ plug it in, implicit
- (3) Find values of m so that the function $y = x^m$ is a solution of the differential equation

$$x^2y'' - 7xy' + 15y = 0$$
 $m = 5$ or $m = 3$

¹Only first order linear is included from section 4.

(4) Solve each first order separable equation.

(a)
$$\frac{dy}{dx} = \sqrt{xy}$$
 $2\sqrt{y} = \frac{2}{3}x^{3/2} + C$

(b)
$$\sin^2 x \frac{dy}{dx} = \sec^2 y$$
 $\frac{1}{2}y + \frac{1}{4}\sin(2y) = -\cot x + C$

(c)
$$\frac{dy}{dx} = \frac{x}{y}e^{x-y}$$
 $ye^{y} - e^{y} = xe^{x} - e^{x} + C$

(5) Solve each IVP.

(a)
$$\frac{dy}{dx} = \sqrt{xy}$$
, $y(0) = 1$ $y = \left(\frac{1}{3}x^{3/2} + 1\right)^2$

(b)
$$e^y \ln(x) dx + y dy = 0$$
, $y(1) = -1$ $e^{-y}(y+1) = x \ln x - x + 1$

(c)
$$y'' = -\cos x + 6x$$
, $y(0) = 3$, $y'(0) = -1$ $y = \cos x + x^3 - x + 2$

(6) Solve each IVP.

(a)
$$\frac{dy}{dx}$$
 - tan $xy = \sin x$, $y(0) = 1$ $y = \frac{1}{2}\sin^2 x \sec x + \sec x$

(b)
$$x \frac{dy}{dx} + 3y = \frac{1}{x^2(1+x^2)}, \quad y(1) = 0 \qquad y = \frac{\tan^{-1}x}{x^3} - \frac{\pi}{4x^3}$$

(c)
$$ty'+y = 2te^{2t}$$
, $y(1) = 0$ $y = e^{2t} - \frac{e^{2t} + e^2}{2t}$