Review for Exam I

MATH 2306

Sections Covered: 1, 2, 3, 4

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.

- (1) For each equation, specify all independent and dependent variables. Identify the given equation as Linear or Non-linear and specify the order.
- (a) $\frac{dy}{dt} + \frac{dx}{dt} = x^2 + y^2$ independent t, dependent x, y, first order, nonlinear
- (b) $x^3y''' 2x^2y'' + 7y = \ln x$ independent x, dependent y, third order, linear
- (c) $e^x dy = x^2 y dx$ independent/dependent could be either, first order, nonlinear in x, linear in y

(To say it's linear in y means that when y is considered the dependent variable, the equation is linear.)

- (2) Determine whether or not the given expression defines a solution to the ODE.
- (a) $y(x) = 2\cos x + \frac{1}{2}e^x$; $\frac{d^2y}{dx^2} + y = e^x$ It does. Use substitution to show it.
- (b) $\ln(xy) = x^2 + y^2$; $(x 2xy^2) \frac{dy}{dx} = (2x^2y y)$ It does. Use implicit differentiation to show it.
- (c) $y = e^x + 2xe^x$; y'' 3y' + 2y = 0 It does not. Plug this y into the ODE and you get $-2e^x$, not zero.
- (d) $e^{-x} + \ln|y| = 1$; $\frac{dy}{dx} = \frac{y}{e^x}$ It does. Use implicit differentiation to show it.
- (3) Find values of m so that the function $y = x^m$ is a solution of the differential equation
- (a) $x^2y'' 7xy' + 15y = 0$ m = 5 or m = 3
- (b) $x^2y'' xy' 2y = 0$ $m = 1 + \sqrt{3}$ or $m = 1 \sqrt{3}$

(4) Solve each first order separable equation.

(a)
$$\frac{dy}{dx} = \sqrt{xy}$$
 $2\sqrt{y} = \frac{2}{3}x^{3/2} + C$

(b)
$$\sin^2 x \frac{dy}{dx} = \sec^2 y$$
 $\frac{1}{2}y + \frac{1}{4}\sin(2y) = -\cot x + C$

(c)
$$\frac{dy}{dx} = \frac{x}{y}e^{x-y}$$
 $ye^{y} - e^{y} = xe^{x} - e^{x} + C$

(5) Solve each IVP.

(a)
$$\frac{dy}{dx} = \sqrt{xy}$$
, $y(0) = 1$ $y = \left(\frac{1}{3}x^{3/2} + 1\right)^2$

(b)
$$e^y \ln(x) dx + y dy = 0$$
, $y(1) = -1$ $e^{-y}(y+1) = x \ln x - x + 1$

(c)
$$y'' = -\cos x + 6x$$
, $y(0) = 3$, $y'(0) = -1$ $y = \cos x + x^3 - x + 2$

(6) Solve each IVP.

(a)
$$\frac{dy}{dx}$$
 - tan $xy = \sin x$, $y(0) = 1$ $y = \frac{1}{2}\sin^2 x \sec x + \sec x$

(b)
$$x \frac{dy}{dx} + 3y = \frac{1}{x^2(1+x^2)}, \quad y(1) = 0 \qquad y = \frac{\tan^{-1}x}{x^3} - \frac{\pi}{4x^3}$$

(c)
$$ty'+y = 2te^{2t}$$
, $y(1) = 0$ $y = e^{2t} - \frac{e^{2t} + e^2}{2t}$

(7) Solve each differential equation using any applicable technique

(a)
$$y'+3y = y^2e^{3x}$$
, $y = \frac{e^{-3x}}{c-x}$

(b)
$$(2xy^2 - 2\sin(2x)) dx + 2x^2y dy = 0$$
 $x^2y^2 + \cos(2x) = C$

(c)
$$(ye^x + y^3) dx + \left(2xy^2 - \frac{y}{1+y^2}\right) dy = 0$$
 $e^x + xy^2 - \tan^{-1}(y) = C$

(d)
$$\frac{dy}{dx} + 4xy = 4x\sqrt{y}$$
 $y = (1 + ce^{-x^2})^2$