Practice for Exam I (Ritter) MATH 3260 Fall 2017

Sections Covered: 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 1.8, 1.9, 2.1

This practice exam is intended to give you a rough idea of the types of problems you can expect to encounter. Nothing else is intended or implied.
(1) Row reduce the matrix to reduced echelon form (by hand). Determine the pivot positions and pivot columns in the matrix.

$$
\left[\begin{array}{cccc}
2 & 4 & 6 & 8 \\
4 & 6 & 8 & 10 \\
6 & 8 & 10 & 4
\end{array}\right]
$$

(2) Find the solution set of the homogeneous linear system. Express the solution in parametric vector form.

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}+6 x_{3}+8 x_{4}=0 \\
& 4 x_{1}+6 x_{2}+8 x_{3}+10 x_{4}=0 \\
& 6 x_{1}+8 x_{2}+10 x_{3}+4 x_{4}=0
\end{aligned}
$$

(3) Determine the value(s) of h and k such that the system has
(a) exactly one solution,
(b) infinitely many solutions,
(c) no solutions.

$$
\begin{aligned}
x_{1}+3 x_{2} & =2 \\
3 x_{1}+h x_{2} & =k
\end{aligned}
$$

(4) Find the solution set for each linear system of equations. Use an augmented matrix with row operations. You may express the solution parametrically ($x_{1}=$ blah, $x_{2}=$ blah blah etc.) or in
parametric vector form, your choice.
(a) $x_{1}+x_{2}-x_{3}=-2$

$$
x_{2}+3 x_{3}=5
$$

$$
2 x_{1}+5 x_{2}-3 x_{3}=6
$$

(b) $x_{1}-x_{2}=2$

$$
3 x_{1}+4 x_{2}-3 x_{3}=8
$$

(c) $\begin{array}{r}x_{1}+2 x_{2}-4 x_{3}=0 \\ 2 x_{1}+4 x_{2}-8 x_{3}=8\end{array}$
(5) Consider the given set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
2 \\
2
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-1 \\
3 \\
0
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]
$$

(a) Determine if $\mathbf{b}=(1,3,1)$ is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. If so, identify the weights. ${ }^{1}$
(b) Determine if $\mathbf{b}=(2,-2,-6)$ is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. If so, identify the weights.
(c) Determine if the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent. If not, find a linear dependence relation.
(d) Determine if the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is linearly independent. If not, find a linear dependence relation.

[^0](e) Does the matrix equation $A \mathbf{x}=\mathbf{0}$ have a nontrivial solution if $A=\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{3} & \mathbf{v}_{4}\end{array}\right]$? Justify your answer.
(6) Determine whether the transformation $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{4}$ is a linear transformation. Justify your conclusion.

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+1,0,0, x_{2}-x_{3}\right)
$$

(7) Show that T is a linear transformation by finding a matrix that implements the mapping. (The terms x_{1}, x_{2} etc. are entries in a vector as opposed to vectors themselves.)

$$
T\left(x_{1}, x_{2}\right)=\left(x_{1}-2 x_{2}, 3 x_{2}, 0,4 x_{1}+x_{2}\right)
$$

(8) Show that if T is a linear transformation, then it is necessarily true that $T(\mathbf{0})=\mathbf{0}$.
(9) Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear tranformation defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-3 x_{3}, 2 x_{1}+2 x_{2}\right) .
$$

(a) Identify the domain and codomain.
(b) Determine if T is one to one.
(c) Determine if T is onto.
(d) Is $(1,1)$ in the domain of T ? If so, find its image. Is $(1,1)$ in the range of T ? Why or why not?
(10) Let A, B, and C be the coefficient matrices ${ }^{2}$ for the linear systems in problem (4) (of this review), respectively. Compute each expression if it exists. If it doesn't exist, state why.
(a) $A+2 B$
(b) A^{T}
(c) $B+C$
(d) $A C$
(e) $A C^{T}$
(f) $C^{T} C$

[^1]
[^0]: ${ }^{1}$ The vector b is equivalent to the column

 $$
 \left[\begin{array}{l}
 1 \\
 3 \\
 1
 \end{array}\right]
 $$

[^1]: ${ }^{2} A$ is the coeff. matrix for part (a), B for part (b), etc.

