Solutions to Practice for Exam I (Ritter) MATH 3260 Fall 2017

Sections Covered: 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 1.8, 1.9

This practice exam is intended to give you a rough idea of the types of problems you can expect to encounter. **Nothing else is intended or implied.**

(1) Row reduce the matrix to reduced echelon form (by hand). Determine the pivot positions and pivot columns in the matrix.

2	4	6	8]
4	6	8	10
6	8	10	4

The row reduction can be completed in about 5 stages leading to an rref

1	0	-1	0
0	1	-1 2 0	0
0	0	0	1

The pivot positions are the (1, 1), (2, 2) and (3, 4) positions, and columns 1, 2 and 4 are pivot columns.

(2) Find the solution set of the homogeneous linear system. Express the solution in parametric vector form.

$2x_1$	+	$4x_2$	+	$6x_3$	+	$8x_4$	=	0
$4x_1$	+	$6x_2$	+	$8x_3$	+	$10x_4$	=	0
$6x_1$	+	$8x_2$	+	$10x_{3}$	+	$4x_4$	=	0

Reading the results off of the rref from problem (1), the solutions

$$\mathbf{x} = t \begin{bmatrix} 1\\ -2\\ 1\\ 0 \end{bmatrix}, \quad -\infty < t < \infty.$$

(3) Determine the value(s) of h and k such that the system has

- (a) exactly one solution, $h \neq 9$, k anything
- (b) infinitely many solutions, h = 9, k = 6
- (c) no solutions. $h = 9, k \neq 6$
- $x_1 + 3x_2 = 2$ $3x_1 + hx_2 = k$

(4) Find the solution set for each linear system of equations. Use an augmented matrix with row operations. You may express the solution parametrically ($x_1 = blah$, $x_2 = blah blah etc.$) or in parametric vector form, your choice.

 $x_1 + 2x_2 - 4x_3 = 0$ $2x_1 + 4x_2 - 8x_3 = 8$ The system is inconsistent. (c)

(5) Consider the given set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$

$$\mathbf{v}_1 = \begin{bmatrix} 1\\ 0\\ -2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0\\ 2\\ 2 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -1\\ 3\\ 0 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 2\\ 0\\ 0 \end{bmatrix}.$$

- (a) Determine if $\mathbf{b} = (1, 3, 1)$ is in Span $\{\mathbf{v}_1, \mathbf{v}_2\}$. If so, identify the weights. ¹ Yes, $\mathbf{b} = \mathbf{v}_1 + \frac{3}{2}\mathbf{v}_2$
- (b) Determine if $\mathbf{b} = (2, -2, -6)$ is in Span $\{\mathbf{v}_1, \mathbf{v}_2\}$. If so, identify the weights. Yes, $\mathbf{b} = 2\mathbf{v}_1 \mathbf{v}_2$
- (c) Determine if the set $\{v_1, v_2, v_3\}$ is linearly independent. If not, find a linear dependence relation. They are linearly independent.
- (d) Determine if the set $\{v_1, v_2, v_3, v_4\}$ is linearly independent. If not, find a linear dependence relation. $6v_1 + 6v_2 4v_3 5v_4 = 0$ They are dependent.
- (e) Does the matrix equation $A\mathbf{x} = \mathbf{0}$ have a nontrivial solution if $A = [\mathbf{v}_1 \ \mathbf{v}_3 \ \mathbf{v}_4]$? Justify your answer. No. If you reduce A to rref, you get I_3 .

(6) Determine whether the transformation $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ is a linear transformation. Justify your conclusion. No. For one thing, $T(\mathbf{0}) \neq \mathbf{0}$.

$$T(x_1, x_2, x_3) = (x_1 + 1, 0, 0, x_2 - x_3)$$

(7) Show that T is a linear transformation by finding a matrix that implements the mapping. (The terms x_1, x_2 etc. are entries in a vector as opposed to vectors themselves.) The standard

matrix
$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \\ 0 & 0 \\ 4 & 1 \end{bmatrix}$$

 $T(x_1, x_2) = (x_1 - 2x_2, 3x_2, 0, 4x_1 + x_2)$

¹The vector **b** is equivalent to the column

(8) Show that if T is a linear transformation, then it is necessarily true that $T(\mathbf{0}) = \mathbf{0}$. There are several acceptable arguments. One can be made by taking any x in the domain. By definition of scalar multiplication, $\mathbf{0} = 0\mathbf{x}$ (the zero vector in the domain of T). Then using the linearity properties, $T(\mathbf{0}) = T(0\mathbf{x}) = 0T(\mathbf{x}) = \mathbf{0}$ where the final term is the zero vector in the codomain.

(9) Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation defined by

$$T(x_1, x_2, x_3) = (x_1 - 3x_3, 2x_1 + 2x_2).$$

- (a) Identify the domain and codomain. \mathbb{R}^3 and \mathbb{R}^2 , respectively
- (b) Determine if T is one to one. No. Note that T(3, -3, 1) = (0, 0).
- (c) Determine if T is onto. Yes. Show for example that $\{T(\mathbf{e}_2), T(\mathbf{e}_3)\}$ spans \mathbb{R}^2 .
- (d) Is (1,1) in the domain of T? If so, find its image. Is (1,1) in the range of T? Why or why not? No to the first since it's not in R³. Yes to the second by virtue of the answer to part (c) above.

(10) Let A, B, and C be the coefficient matrices² for the linear systems in problem (4) (of this review), respectively. Compute each expression if it exists. If it doesn't exist, state why.

(a)
$$A + 2B$$

$$\begin{bmatrix} 6 & 8 & -5 \\ 3 & -1 & -1 \\ 6 & 9 & -3 \end{bmatrix}$$

(b) A^{T}
$$\begin{bmatrix} 2 & 1 & 0 \\ -2 & 1 & 1 \\ 1 & -1 & 3 \end{bmatrix}$$

 $^{^{2}}A$ is the coeff. matrix for part (a), B for part (b), etc.

- (c) B + C This is undefined since the matrices are not of the same size.
- (d) AC This is undefined. C does not have the same number of rows as A does columns.

(e)
$$AC^{T}$$
 $\begin{bmatrix} -6 & -12 \\ 7 & 14 \\ -10 & -20 \end{bmatrix}$
(f) $C^{T}C$ $\begin{bmatrix} 5 & 10 & -20 \\ 10 & 20 & -40 \\ -20 & -40 & 80 \end{bmatrix}$ As an aside, note that $(C^{T}C)^{T} = C^{T}C$ as expected.

There is a necessary symmetry to the entries of this product.