Solutions to Practice for Exam I (Ritter) MATH 3260 Fall 2017

Sections Covered: 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 1.8, 1.9
This practice exam is intended to give you a rough idea of the types of problems you can expect to encounter. Nothing else is intended or implied.
(1) Row reduce the matrix to reduced echelon form (by hand). Determine the pivot positions and pivot columns in the matrix.
$\left[\begin{array}{cccc}2 & 4 & 6 & 8 \\ 4 & 6 & 8 & 10 \\ 6 & 8 & 10 & 4\end{array}\right]$

The row reduction can be completed in about 5 stages leading to an rref

$$
\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The pivot positions are the $(1,1),(2,2)$ and $(3,4)$ positions, and columns 1,2 and 4 are pivot columns.
(2) Find the solution set of the homogeneous linear system. Express the solution in parametric vector form.

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}+6 x_{3}+8 x_{4}=0 \\
& 4 x_{1}+6 x_{2}+8 x_{3}+10 x_{4}=0 \\
& 6 x_{1}+8 x_{2}+10 x_{3}+4 x_{4}=0
\end{aligned}
$$

Reading the results off of the rref from problem (1), the solutions

$$
\mathbf{x}=t\left[\begin{array}{r}
1 \\
-2 \\
1 \\
0
\end{array}\right], \quad-\infty<t<\infty
$$

(3) Determine the value(s) of h and k such that the system has
(a) exactly one solution, $h \neq 9, k$ anything
(b) infinitely many solutions, $h=9, k=6$
(c) no solutions. $h=9, k \neq 6$

$$
\begin{array}{r}
x_{1}+3 x_{2}=2 \\
3 x_{1}+h x_{2}=k
\end{array}
$$

(4) Find the solution set for each linear system of equations. Use an augmented matrix with row operations. You may express the solution parametrically ($x_{1}=$ blah, $x_{2}=$ blah blah etc.) or in parametric vector form, your choice.
$\begin{aligned} & 2 x_{1}-2 x_{2}+x_{3}=6 \\ & \text { (a) } \begin{aligned} x_{1}+x_{2}-x_{3} & =-2 \\ x_{2}+3 x_{3} & =5\end{aligned} \quad \quad \mathrm{x}=\left[\begin{array}{r}1 \\ -1 \\ 2\end{array}\right] \\ & \text { (b) } \begin{aligned} 2 x_{1}+5 x_{2}-3 x_{3} & =6 \\ x_{1}-x_{2} & =2 \\ 3 x_{1}+4 x_{2}-3 x_{3} & =8\end{aligned} \quad \mathbf{x}=\left[\begin{array}{c}\frac{16}{7} \\ \frac{2}{7} \\ 0\end{array}\right]+\frac{x_{3}}{7}\left[\begin{array}{l}3 \\ 3 \\ 7\end{array}\right]\end{aligned}$
(c) $x_{1}+2 x_{2}-4 x_{3}=0 \quad$ The system is inconsistent.
(5) Consider the given set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
2 \\
2
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-1 \\
3 \\
0
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{c}
2 \\
0 \\
0
\end{array}\right]
$$

(a) Determine if $\mathbf{b}=(1,3,1)$ is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. If so, identify the weights. ${ }^{1}$ Yes, $\mathbf{b}=$ $\mathbf{v}_{1}+\frac{3}{2} \mathbf{v}_{2}$
(b) Determine if $\mathbf{b}=(2,-2,-6)$ is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. If so, identify the weights. Yes, $\mathbf{b}=$ $2 \mathbf{v}_{1}-\mathbf{v}_{2}$
(c) Determine if the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent. If not, find a linear dependence relation. They are linearly independent.
(d) Determine if the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is linearly independent. If not, find a linear dependence relation. $6 \mathbf{v}_{1}+6 \mathbf{v}_{2}-4 \mathbf{v}_{3}-5 \mathbf{v}_{4}=\mathbf{0}$ They are dependent.
(e) Does the matrix equation $A \mathbf{x}=\mathbf{0}$ have a nontrivial solution if $A=\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{3} & \mathbf{v}_{4}\end{array}\right]$? Justify your answer. No. If you reduce A to rref, you get I_{3}.
(6) Determine whether the transformation $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{4}$ is a linear transformation. Justify your conclusion. No. For one thing, $T(\mathbf{0}) \neq \mathbf{0}$.

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+1,0,0, x_{2}-x_{3}\right)
$$

(7) Show that T is a linear transformation by finding a matrix that implements the mapping.
(The terms x_{1}, x_{2} etc. are entries in a vector as opposed to vectors themselves.) The standard $\operatorname{matrix} A=\left[\begin{array}{rr}1 & -2 \\ 0 & 3 \\ 0 & 0 \\ 4 & 1\end{array}\right]$

$$
T\left(x_{1}, x_{2}\right)=\left(x_{1}-2 x_{2}, 3 x_{2}, 0,4 x_{1}+x_{2}\right)
$$

[^0]\[

\left[$$
\begin{array}{l}
1 \\
3 \\
1
\end{array}
$$\right]
\]

(8) Show that if T is a linear transformation, then it is necessarily true that $T(\mathbf{0})=\mathbf{0}$. There are several acceptable arguments. One can be made by taking any x in the domain. By definition of scalar multiplication, $\mathbf{0}=0 \mathrm{x}$ (the zero vector in the domain of T). Then using the linearity properties, $T(\mathbf{0})=T(0 \mathbf{x})=0 T(\mathbf{x})=\mathbf{0}$ where the final term is the zero vector in the codomain.
(9) Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear tranformation defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-3 x_{3}, 2 x_{1}+2 x_{2}\right) .
$$

(a) Identify the domain and codomain. \mathbb{R}^{3} and \mathbb{R}^{2}, respectively
(b) Determine if T is one to one. No. Note that $T(3,-3,1)=(0,0)$.
(c) Determine if T is onto. Yes. Show for example that $\left\{T\left(\mathbf{e}_{2}\right), T\left(\mathbf{e}_{3}\right)\right\}$ spans \mathbb{R}^{2}.
(d) Is $(1,1)$ in the domain of T ? If so, find its image. Is $(1,1)$ in the range of T ? Why or why not? No to the first since it's not in \mathbb{R}^{3}. Yes to the second by virtue of the answer to part (c) above.
(10) Let A, B, and C be the coefficient matrices ${ }^{2}$ for the linear systems in problem (4) (of this review), respectively. Compute each expression if it exists. If it doesn't exist, state why.
(a) $A+2 B\left[\begin{array}{rrr}6 & 8 & -5 \\ 3 & -1 & -1 \\ 6 & 9 & -3\end{array}\right]$
(b) $A^{T}\left[\begin{array}{rrr}2 & 1 & 0 \\ -2 & 1 & 1 \\ 1 & -1 & 3\end{array}\right]$

[^1](c) $B+C \quad$ This is undefined since the matrices are not of the same size.
(d) $A C \quad$ This is undefined. C does not have the same number of rows as A does columns.

(e) $A C^{T}\left[\begin{array}{rr}-6 & -12 \\ 7 & 14 \\ -10 & -20\end{array}\right]$
(f) $C^{T} C\left[\begin{array}{rrr}5 & 10 & -20 \\ 10 & 20 & -40 \\ -20 & -40 & 80\end{array}\right] \quad$ As an aside, note that $\left(C^{T} C\right)^{T}=C^{T} C$ as expected.

There is a necessary symmetry to the entries of this product.

[^0]: ${ }^{1}$ The vector \mathbf{b} is equivalent to the column

[^1]: ${ }^{2} A$ is the coeff. matrix for part (a), B for part (b), etc.

