Practice for Exam I (Ritter) MATH 3260 Spring 2018

Sections Covered: 1.1, 1.2, 1.3, 1.4, 1.5, 1.7

This practice exam is intended to give you a rough idea of the types of problems you can expect to encounter. **Nothing else is intended or implied.**

(1) Row reduce the matrix to reduced echelon form (by hand). Determine the pivot positions and pivot columns in the matrix.

2	4	6	8
4	6	8	10
6	8	10	4

(2) Find the solution set of the homogeneous linear system. Express the solution in parametric vector form.

 $2x_1 + 4x_2 + 6x_3 + 8x_4 = 0$ $4x_1 + 6x_2 + 8x_3 + 10x_4 = 0$ $6x_1 + 8x_2 + 10x_3 + 4x_4 = 0$

(3) Determine the value(s) of h and k such that the system has

- (a) exactly one solution,
- (b) infinitely many solutions,
- (c) no solutions.

(4) Find the solution set for each linear system of equations. Use an augmented matrix with row operations. You may express the solution parametrically ($x_1 = blah$, $x_2 = blah$ blah etc.) or in

parametric vector form, your choice.

- $2x_1 2x_2 + x_3 = 6$ (a) $x_1 + x_2 x_3 = -2$ $x_2 + 3x_3 = 5$
- $2x_1 + 5x_2 3x_3 = 6$ (b) $x_1 x_2 = 2$ $3x_1 + 4x_2 3x_3 = 8$ $x_1 + 2x_2 4x_3 = 0$
- (c) $2x_1 + 4x_2 8x_3 = 8$

(5) Consider the given set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$

$$\mathbf{v}_1 = \begin{bmatrix} 1\\0\\-2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0\\2\\2 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -1\\3\\0 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 2\\0\\0 \end{bmatrix}.$$

- (a) Determine if $\mathbf{b} = (1, 3, 1)$ is in Span $\{\mathbf{v}_1, \mathbf{v}_2\}$. If so, identify the weights. ¹
- (b) Determine if $\mathbf{b} = (2, -2, -6)$ is in Span $\{\mathbf{v}_1, \mathbf{v}_2\}$. If so, identify the weights.
- (c) Determine if the set $\{v_1, v_2, v_3\}$ is linearly independent. If not, find a linear dependence relation.
- (d) Determine if the set $\{v_1, v_2, v_3, v_4\}$ is linearly independent. If not, find a linear dependence relation.

 $\left[\begin{array}{c}1\\3\\1\end{array}\right]$

¹The vector **b** is equivalent to the column

•

(e) Does the matrix equation $A\mathbf{x} = \mathbf{0}$ have a nontrivial solution if $A = [\mathbf{v}_1 \ \mathbf{v}_3 \ \mathbf{v}_4]$? Justify your answer.

(6) Suppose the homogeneous equation $A\mathbf{x} = \mathbf{0}$ has two solutions \mathbf{u} and \mathbf{v} . Prove that every vector in Span $\{\mathbf{u}, \mathbf{v}\}$ is also a solution.

(7) Suppose the set $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ is linearly dependent in \mathbb{R}^5 . Show that for any vector \mathbf{w} in \mathbb{R}^5 , the set ${\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{w}}$ is linearly dependent.

(8) Find all solutions of the vector equation.

$$x_1 \begin{bmatrix} 2\\1\\0 \end{bmatrix} + x_2 \begin{bmatrix} -1\\1\\1 \end{bmatrix} + x_3 \begin{bmatrix} 0\\3\\-4 \end{bmatrix} + x_4 \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$