Practice for Exam I (Ritter) MATH 3260 Spring 2018

Sections Covered: 1.1, 1.2, 1.3, 1.4, 1.5, 1.7
This practice exam is intended to give you a rough idea of the types of problems you can expect to encounter. Nothing else is intended or implied.
(1) Row reduce the matrix to reduced echelon form (by hand). Determine the pivot positions and pivot columns in the matrix.

$$
\left[\begin{array}{cccc}
2 & 4 & 6 & 8 \\
4 & 6 & 8 & 10 \\
6 & 8 & 10 & 4
\end{array}\right]
$$

(2) Find the solution set of the homogeneous linear system. Express the solution in parametric vector form.

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}+6 x_{3}+8 x_{4}=0 \\
& 4 x_{1}+6 x_{2}+8 x_{3}+10 x_{4}=0 \\
& 6 x_{1}+8 x_{2}+10 x_{3}+4 x_{4}=0
\end{aligned}
$$

(3) Determine the value(s) of h and k such that the system has
(a) exactly one solution,
(b) infinitely many solutions,
(c) no solutions.

$$
\begin{array}{r}
x_{1}+3 x_{2}=2 \\
3 x_{1}+h x_{2}=k
\end{array}
$$

(4) Find the solution set for each linear system of equations. Use an augmented matrix with row operations. You may express the solution parametrically ($x_{1}=$ blah, $x_{2}=$ blah blah etc.) or in
parametric vector form, your choice.
(a) $x_{1}+x_{2}-x_{3}=-2$

$$
x_{2}+3 x_{3}=5
$$

$$
2 x_{1}+5 x_{2}-3 x_{3}=6
$$

(b) $x_{1}-x_{2}=2$

$$
3 x_{1}+4 x_{2}-3 x_{3}=8
$$

(c) $\begin{array}{r}x_{1}+2 x_{2}-4 x_{3}=0 \\ 2 x_{1}+4 x_{2}-8 x_{3}=8\end{array}$
(5) Consider the given set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
2 \\
2
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-1 \\
3 \\
0
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]
$$

(a) Determine if $\mathbf{b}=(1,3,1)$ is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. If so, identify the weights. ${ }^{1}$
(b) Determine if $\mathbf{b}=(2,-2,-6)$ is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. If so, identify the weights.
(c) Determine if the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent. If not, find a linear dependence relation.
(d) Determine if the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is linearly independent. If not, find a linear dependence relation.

[^0](e) Does the matrix equation $A \mathbf{x}=\mathbf{0}$ have a nontrivial solution if $A=\left[\begin{array}{ll}\mathbf{v}_{1} & \mathbf{v}_{3} \mathbf{v}_{4}\end{array}\right]$? Justify your answer.
(6) Suppose the homogeneous equation $A \mathbf{x}=\mathbf{0}$ has two solutions \mathbf{u} and \mathbf{v}. Prove that every vector in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is also a solution.
(7) Suppose the set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent in \mathbb{R}^{5}. Show that for any vector \mathbf{w} in \mathbb{R}^{5}, the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{w}\right\}$ is linearly dependent.
(8) Find all solutions of the vector equation.

$$
x_{1}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{c}
0 \\
3 \\
-4
\end{array}\right]+x_{4}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

[^0]: ${ }^{1}$ The vector b is equivalent to the column

 $$
 \left[\begin{array}{l}
 1 \\
 3 \\
 1
 \end{array}\right]
 $$

