Solutions to Practice for Exam I (Ritter) MATH 3260 Fall 2017

Sections Covered: 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 1.8, 1.9
This practice exam is intended to give you a rough idea of the types of problems you can expect to encounter. Nothing else is intended or implied.
(1) Row reduce the matrix to reduced echelon form (by hand). Determine the pivot positions and pivot columns in the matrix.
$\left[\begin{array}{cccc}2 & 4 & 6 & 8 \\ 4 & 6 & 8 & 10 \\ 6 & 8 & 10 & 4\end{array}\right]$

The row reduction can be completed in about 5 stages leading to an rref

$$
\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The pivot positions are the $(1,1),(2,2)$ and $(3,4)$ positions, and columns 1,2 and 4 are pivot columns.
(2) Find the solution set of the homogeneous linear system. Express the solution in parametric vector form.

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}+6 x_{3}+8 x_{4}=0 \\
& 4 x_{1}+6 x_{2}+8 x_{3}+10 x_{4}=0 \\
& 6 x_{1}+8 x_{2}+10 x_{3}+4 x_{4}=0
\end{aligned}
$$

Reading the results off of the rref from problem (1), the solutions

$$
\mathbf{x}=t\left[\begin{array}{r}
1 \\
-2 \\
1 \\
0
\end{array}\right], \quad-\infty<t<\infty
$$

(3) Determine the value(s) of h and k such that the system has
(a) exactly one solution, $h \neq 9, k$ anything
(b) infinitely many solutions, $h=9, k=6$
(c) no solutions. $h=9, k \neq 6$

$$
\begin{array}{r}
x_{1}+3 x_{2}=2 \\
3 x_{1}+h x_{2}=k
\end{array}
$$

(4) Find the solution set for each linear system of equations. Use an augmented matrix with row operations. You may express the solution parametrically ($x_{1}=$ blah, $x_{2}=$ blah blah etc.) or in parametric vector form, your choice.
$\begin{aligned} & 2 x_{1}-2 x_{2}+x_{3}=6 \\ & \text { (a) } \begin{aligned} x_{1}+x_{2}-x_{3} & =-2 \\ x_{2}+3 x_{3} & =5\end{aligned} \quad \quad \mathrm{x}=\left[\begin{array}{r}1 \\ -1 \\ 2\end{array}\right] \\ & \text { (b) } \begin{aligned} 2 x_{1}+5 x_{2}-3 x_{3} & =6 \\ x_{1}-x_{2} & =2 \\ 3 x_{1}+4 x_{2}-3 x_{3} & =8\end{aligned} \quad \mathbf{x}=\left[\begin{array}{c}\frac{16}{7} \\ \frac{2}{7} \\ 0\end{array}\right]+\frac{x_{3}}{7}\left[\begin{array}{l}3 \\ 3 \\ 7\end{array}\right]\end{aligned}$
(c) $x_{1}+2 x_{2}-4 x_{3}=0 \quad$ The system is inconsistent.
(5) Consider the given set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
2 \\
2
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-1 \\
3 \\
0
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{c}
2 \\
0 \\
0
\end{array}\right]
$$

(a) Determine if $\mathbf{b}=(1,3,1)$ is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. If so, identify the weights. Yes, $\mathbf{b}=$ $\mathbf{v}_{1}+\frac{3}{2} \mathbf{v}_{2}$
(b) Determine if $\mathbf{b}=(2,-2,-6)$ is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. If so, identify the weights. Yes, $\mathbf{b}=$ $2 \mathbf{v}_{1}-\mathbf{v}_{2}$
(c) Determine if the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent. If not, find a linear dependence relation. They are linearly independent.
(d) Determine if the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is linearly independent. If not, find a linear dependence relation. $6 \mathbf{v}_{1}+6 \mathbf{v}_{2}-4 \mathbf{v}_{3}-5 \mathbf{v}_{4}=\mathbf{0}$ They are dependent.
(e) Does the matrix equation $A \mathbf{x}=\mathbf{0}$ have a nontrivial solution if $A=\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{3} & \mathbf{v}_{4}\end{array}\right]$? Justify your answer. No. If you reduce A to rref, you get I_{3}.
(6) Suppose the homogeneous equation $A \mathbf{x}=\mathbf{0}$ has two solutions \mathbf{u} and \mathbf{v}. Prove that every vector in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is also a solution.

HINT: Use properties of the matrix product to see what can be said about $\mathbf{x}=c_{1} \mathbf{u}+c_{2} \mathbf{v}$ for any choice of the scalars.
(7) Suppose the set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent in \mathbb{R}^{5}. Show that for any vector \mathbf{w} in \mathbb{R}^{5}, the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{w}\right\}$ is linearly dependent.

HINT: Use a linear dependence relation on the elements of S to find one including w. Remember that some scalar(s) can be zero as long as at least one is not.
(8) Find all solutions of the vector equation.

$$
x_{1}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{c}
0 \\
3 \\
-4
\end{array}\right]+x_{4}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \mathbf{x}=x_{4}\left[\begin{array}{c}
-\frac{7}{9} \\
-\frac{5}{9} \\
\frac{1}{9} \\
1
\end{array}\right]
$$

