Review for Exam 2

MATH 1112 sections 54 Spring 2019

Sections Covered in Bittinger: 2.5, 2.4, 5.2, 5.3, 5.4, 5.5, Intro to Angles (In Miller: 2.6, 2.7, $4.2,4.3,4.4,4.5,5.1)$

Calculator Policy: There will be NO calculator use on this exam. You are strongly encouraged to prepare for the exam without relying on a calculator.

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) Use transformations to produce a rough plot of each of the following. Label key points (such as intercepts)
(a) $y=\sqrt{x-2}$
(b) $y=\sqrt{x}-2$
(c) $y=(x+3)^{3}+1$
(d) $y=-\sqrt{x+2}$
(2) Consider the piecewise defined function $f(x)=\left\{\begin{array}{lr}x+2, & x<-1 \\ -x, & -1 \leq x<0 \\ 2 x, & 0 \leq x\end{array}\right.$.

Plot $y=f(x)$. Then use your graph to plot each of the following involving transformations.
(a) $y=f(x-3)$
(b) $y=-f(x)$
(c) $y=f(x)+2$
(d) $y=f(-x)$
(3) Complete these definitions.
(a) A function $f(x)$ is an even function if \ldots for each x in the domain of f.
(b) A function $f(x)$ is an odd function if...for each x in the domain of f.
(4) Determine algebraically whether each function is even, odd, or neither.
(a) $f(x)=x+|x|$
(b) $g(x)=\sqrt{x^{2}+1}$
(c) $h(t)=\frac{t}{t^{2}+4}$
(d) $S(x)=\frac{2 x-1}{(x-1)^{2}}$
(e) $M(x)=N(x)+N(-x)$ where N is any function whose domain is all real numbers.
(5) Identify each statement as true or false. (Full disclosure, some of these are meant to be silly.)
(a) $\frac{\ln (x)}{x}=\ln$
(b) $\log _{4}(x)=\frac{\log _{5}(x)}{\log _{5}(4)}$
(c) $\left(e^{x}\right)^{2}=e^{2 x}$
(d) $\ln x=\frac{1}{x}$
(e) $\log _{a}(x-y)=\frac{\log _{a}(x)}{\log _{a}(y)}$
(f) $\log \left(8^{9}\right)=9 \log (8)$
(g) $e^{9 x}=9 e^{x}$
(6) Evaluate each expression without a calculator
(a) $\quad \log _{3}(1)$
(b) $\quad \log _{2} \frac{1}{32}$
(c) $\ln \sqrt{e}$
(d) $\log (0.0001)$
(e) $\quad \log _{4}\left(2^{7}\right)$
(f) $\log _{\pi} \pi$
(7) Express as a single logarithm. Simplify if possible.
(a) $4 \ln x+\frac{1}{3} \ln y-2 \ln z$
(b) $\log _{2}\left(x^{3}-8\right)-\log _{2}\left(x^{2}+2 x+4\right)$
(8) Expand as a sum or difference of logarithms.
(a) $\ln \sqrt[4]{w r^{2}}$
(b) $\log \sqrt[3]{\frac{M^{2}}{N}}$
(9) Solve each equation. Obtain an exact solution.
(a) $\log _{3}(x)+\log _{3}(x+1)=\log _{3}(2)+\log _{3}(x+3)$
(b) $\log _{3}\left(x^{2}+x\right)=\log _{3}(2)+\log _{3}(x+3)$
(c) $e^{x}+e^{-x}=3$
(d) $5^{x+1}=3^{2 x-1}$
(10) Convert each angle to radian measure.
(a) 60°
(b) -120°
(c) 18°
(d) -75°
(11) Convert each angle to degrees.
(a) $\frac{\pi}{12}$
(b) -2π
(c) $\frac{4 \pi}{3}$
(d) 2
(12) Determine each of the following.
(a) The arclength of a circle of radius 5 subtended by a central angle of 120°.
(b) The area of a sector of a circle of radius 5 for which the central angle is 120°.
(c) The distance traveled by at point at the tip of a minute hand of a clock between 1:45 pm and $2: 05 \mathrm{pm}$ if the minute hand is 6 inches long.
(13) Determine if the given angles are complements, supplements, coterminal, or none of these three things.
(a) $\frac{\pi}{3}$ and $\frac{\pi}{6}$
(b) $\frac{4 \pi}{3}$ and $-\frac{2 \pi}{3}$
(c) 137° and 43°
(d) $\frac{\pi}{2}$ and -270°

