Solutions to Review for Exam 2

MATH 1112 sections 54 Spring 2019
Sections Covered in Bittinger: 2.5, 2.4, 5.2, 5.3, 5.4, 5.5, Intro to Angles (In Miller: 2.6, 2.7,

$$
4.2,4.3,4.4,4.5,5.1)
$$

Calculator Policy: There will be NO calculator use on this exam. You are strongly encouraged to prepare for the exam without relying on a calculator.

There are additional pages with selected problems worked out in detail. Such solutions are available for questions marked with \star.
(1) Use transformations to produce a rough plot of each of the following. Label key points (such as intercepts) *
(a) $y=\sqrt{x-2}$
(b) $y=\sqrt{x}-2$
(c) $y=(x+3)^{3}+1$
(d) $y=-\sqrt{x+2}$
(2) Consider the piecewise defined function $f(x)=\left\{\begin{array}{lr}x+2, & x<-1 \\ -x, & -1 \leq x<0 \\ 2 x, & 0 \leq x\end{array} . \quad \star\right.$

Plot $y=f(x)$. Then use your graph to plot each of the following involving transformations.
(a) $y=f(x-3)$
(b) $y=-f(x)$
(c) $y=f(x)+2$
(d) $y=f(-x)$
(3) Complete these definitions. There is a glossary linked on the course page and in D2L. Consult that to check your answer.
(a) A function $f(x)$ is an even function if \ldots for each x in the domain of f.
(b) A function $f(x)$ is an odd function if \ldots for each x in the domain of f.
(4) Determine algebraically whether each function is even, odd, or neither.
(a) $f(x)=x+|x|$ Neither
(b) $g(x)=\sqrt{x^{2}+1}$ Even
(c) $h(t)=\frac{t}{t^{2}+4}$ Odd
(d) $S(x)=\frac{2 x-1}{(x-1)^{2}}$ Neither
(e) $M(x)=N(x)+N(-x)$ where N is any function whose domain is all real numbers. *
(5) Identify each statement as true or false. (Full disclosure, some of these are meant to be silly.)
(a) $\frac{\ln (x)}{x}=\ln$ False (please recognize this as ludicrous)
(b) $\log _{4}(x)=\frac{\log _{5}(x)}{\log _{5}(4)}$ True
(c) $\left(e^{x}\right)^{2}=e^{2 x}$ True
(d) $\ln x=\frac{1}{x}$ False
(e) $\log _{a}(x-y)=\frac{\log _{a}(x)}{\log _{a}(y)}$ False
(f) $\log \left(8^{9}\right)=9 \log (8)$ True
(g) $e^{9 x}=9 e^{x}$ False
(6) Evaluate each expression without a calculator
(a) $\quad \log _{3}(1)=0$
(b) $\log _{2} \frac{1}{32}=-5$
(c) $\ln \sqrt{e} \star$
(d) $\log (0.0001)=-4$
(e) $\log _{4}\left(2^{7}\right) \quad \star$
(f) $\log _{\pi} \pi=1$
(7) Express as a single logarithm. Simplify if possible.
(a) $\quad 4 \ln x+\frac{1}{3} \ln y-2 \ln z=\ln \left(\frac{x^{4} \sqrt[3]{y}}{z^{2}}\right)$
(b) $\log _{2}\left(x^{3}-8\right)-\log _{2}\left(x^{2}+2 x+4\right) \quad$ *
(8) Expand as a sum or difference of logarithms.
(a) $\quad \ln \sqrt[4]{w r^{2}}=\frac{1}{4} \ln w+\frac{1}{2} \ln z$
(b) $\log \sqrt[3]{\frac{M^{2}}{N}}=\frac{2}{3} \log M-\frac{1}{3} \log N$
(9) Solve each equation. Obtain an exact solution.
(a) $\log _{3}(x)+\log _{3}(x+1)=\log _{3}(2)+\log _{3}(x+3) \quad \star$
(b) $\log _{3}\left(x^{2}+x\right)=\log _{3}(2)+\log _{3}(x+3) \quad 3$ and -2
(c) $e^{x}+e^{-x}=3 \star$
(d) $5^{x+1}=3^{2 x-1} \frac{\ln 3+\ln 5}{2 \ln 3-\ln 5}$. The natural \log can be replaced with any other base.
(10) Convert each angle to radian measure.
(a) $60^{\circ} \frac{\pi}{3}$
(b) $-120^{\circ}-\frac{2 \pi}{3}$
(c) $18^{\circ} \frac{\pi}{10}$
(d) $-75^{\circ}-\frac{5 \pi}{12}$
(11) Convert each angle to degrees.
(a) $\frac{\pi}{12} 15^{\circ}$
(b) $-2 \pi-360^{\circ}$
(c) $\frac{4 \pi}{3} 240^{\circ}$
(d) $2 \frac{360^{\circ}}{\pi}$
(12) Determine each of the following.
(a) The arclength of a circle of radius 5 ft subtended by a central angle of $120^{\circ} \cdot \frac{10 \pi}{3} \mathrm{ft}$
(b) The area of a sector of a circle of radius 5 ft for which the central angle is $120^{\circ} \cdot \frac{25 \pi}{3} \mathrm{ft}^{2}$
(c) The distance traveled by a point on a minute hand of a clock between 1:45 pm and 2:05 pm if the minute hand is 6 inches long.*
(13) Determine if the given angles are complements, supplements, coterminal, or none of these three things.
(a) $\frac{\pi}{3}$ and $\frac{\pi}{6}$ Complementary
(b) $\frac{4 \pi}{3}$ and $-\frac{2 \pi}{3}$ Co-terminal
(c) 137° and 43° Supplementary
(d) $\frac{\pi}{2}$ and -270° Co-terminal

2) $f(x)= \begin{cases}x+2, & x<-1 \\ -x, & -1 \leq x<0 \\ 2 x, & 0 \leq x\end{cases}$

c)

d)

4 e) $M(x)=N(x)+N(-x)$ This is an evenfunction
note that $M(-x)=N(-x)+N(-(-x))$ evaluate e $-x$

$$
\begin{array}{ll}
=N(-x)+N(x) & -(-x)=x \\
=N(x)+N(-x) & a+b=b+a \\
=M(x) &
\end{array}
$$

That is, $M(-x)=M(x)$. So M is even.
6) c) $\ln \sqrt{e}=\ln e^{1 / 2}=\frac{1}{2} \ln e=\frac{1}{2}(1)=\frac{1}{2} \quad \ln e=1$
e) $\log _{4}\left(2^{7}\right)=7 \log _{4}(2)=7\left(\frac{1}{2}\right)=\frac{7}{2} \quad 2=4^{1 / 2}$

$$
7 \text { b) } \log _{2}\left(x^{3}-8\right)-\log _{2}\left(x^{2}+2 x+4\right)=\log _{2}\left(\frac{x^{3}-8}{x^{2}+2 x+4}\right)
$$

Difference of cubes

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

$$
=\log _{2}\left(\frac{(x-2)\left(x^{2}+2 x+4\right)}{x^{2}+2 x+4}\right)
$$

so $x^{3}-8=(x-2)\left(x^{2}+2 x+2^{2}\right)$

$$
=\log _{2}(x-2)
$$

9 a) $\log _{3}(x)+\log _{3}(x+1)=\log _{3}(2)+\log _{3}(x+3)$

$$
\begin{array}{ll}
\log _{3}(x(x+1))=\log _{3}(2(x+3)) & \log _{a}(n N)=\log M+\log _{a} N \\
x(x+1)=2(x+3) & \log _{a} x=\log _{a} y \Rightarrow x=y \\
x^{2}+x=2 x+6 & \\
x^{2}-x-6=0 & \\
(x-3)(x+2)=0 \quad x=3 \text { or } x=-2
\end{array}
$$

These solutions havetoke verified in the original equation when $x=3 \quad \log _{3}(3)+\log _{3}(3+1) \stackrel{?}{=} \log _{3}(2)+\log _{3}(3+3)$

$$
\log _{3}(3.4) \stackrel{?}{=} \log _{3}(2.6)
$$

yes they both equal $\log _{3}(12)$
whin $x=-2 \quad \log _{3}(-2)$ is not defined
-2 is not a solution

The only solution is 3 .
a c) $e^{x}+e^{-x}=3$
$e^{x}\left(e^{x}+e^{-x}\right)=e^{x}(3)$
$\left(e^{x}\right)^{2}+e^{x} e^{-x}=3 e^{x}$
$\left(e^{x}\right)^{2}+1=3 e^{x}$

$$
\left(e^{x}\right)^{2}-3 e^{x}+1=0
$$

Lat $u=e^{x} \quad u^{2}-3 u+1=0 \quad u=\frac{3 \pm \sqrt{3^{2}-4 \cdot 1 \cdot 1}}{2}=\frac{3 \pm \sqrt{5}}{2}$
Both $\frac{3+\sqrt{5}}{2}$ and $\frac{3-\sqrt{5}}{2}$ ane positive, so we con take
the natwal \log of both.

$$
u=e^{x} \quad \text { so } \quad x=\ln u
$$

There are two solutions

$$
x=\ln \left(\frac{3+\sqrt{5}}{2}\right) \text { or } x=\ln \left(\frac{3-\sqrt{5}}{2}\right)
$$

The path traversed by the tip is

The hard passes through an angle $\theta=\frac{4}{12}(2 \pi)=\frac{2 \pi}{3}$ Note that that is 4 out of 12 tick marks on tho clock face (9 to 10 to 11 to 12 to 1)

Arc length $s=r \theta \quad r=6$ in and $\theta=\frac{2 \pi}{3}$
so the distance

$$
S=(6 \text { in })\left(\frac{2 \pi}{3}\right)=4 \pi \text { in }
$$

