Solutions to Review for Exam 2

MATH 1112 sections 54 Spring 2019

Sections Covered in Bittinger: 2.5, 2.4, 5.2, 5.3, 5.4, 5.5, Intro to Angles (In Miller: 2.6, 2.7, 4.2, 4.3, 4.4, 4.5, 5.1)

Calculator Policy: There will be NO calculator use on this exam. You are strongly encouraged to prepare for the exam without relying on a calculator.

There are additional pages with selected problems worked out in detail. Such solutions are available for questions marked with \star .

(1) Use transformations to produce a rough plot of each of the following. Label key points (such as intercepts) *

(a)
$$y = \sqrt{x-2}$$

(b) $y = \sqrt{x-2}$
(c) $y = (x+3)^3 + 1$
(d) $y = -\sqrt{x+2}$

(2) Consider the piecewise defined function $f(x) = \begin{cases} x+2, & x < -1 \\ -x, & -1 \le x < 0 \\ 2x, & 0 \le x \end{cases}$

Plot y = f(x). Then use your graph to plot each of the following involving transformations.

- (a) y = f(x 3)
- (b) y = -f(x)
- (c) y = f(x) + 2
- (d) y = f(-x)

(3) Complete these definitions. There is a glossary linked on the course page and in D2L.Consult that to check your answer.

- (a) A function f(x) is an even function if ... for each x in the domain of f.
- (b) A function f(x) is an odd function if ... for each x in the domain of f.
- (4) Determine algebraically whether each function is even, odd, or neither.

- (a) f(x) = x + |x| Neither
- (b) $g(x) = \sqrt{x^2 + 1}$ Even
- (c) $h(t) = \frac{t}{t^2+4}$ Odd
- (d) $S(x) = \frac{2x-1}{(x-1)^2}$ Neither
- (e) M(x) = N(x) + N(-x) where N is any function whose domain is all real numbers. \star
- (5) Identify each statement as true or false. (Full disclosure, some of these are meant to be silly.)
- (a) $\frac{\ln(x)}{x} = \ln$ False (please recognize this as ludicrous) (b) $\log_4(x) = \frac{\log_5(x)}{\log_5(4)}$ True (c) $(e^x)^2 = e^{2x}$ True (d) $\ln x = \frac{1}{x}$ False (e) $\log_a(x - y) = \frac{\log_a(x)}{\log_a(y)}$ False (f) $\log(8^9) = 9\log(8)$ True (g) $e^{9x} = 9e^x$ False
- (6) Evaluate each expression without a calculator
- (a) $\log_3(1) = 0$ (b) $\log_2 \frac{1}{32} = -5$ (c) $\ln \sqrt{e} \star$ (d) $\log(0.0001) = -4$ (e) $\log_4(2^7) \star$ (f) $\log_\pi \pi = 1$
- (7) Express as a single logarithm. Simplify if possible.
- (a) $4\ln x + \frac{1}{3}\ln y 2\ln z = \ln\left(\frac{x^4\sqrt[3]{y}}{z^2}\right)$ (b) $\log_2(x^3 8) \log_2(x^2 + 2x + 4) \star$
- (8) Expand as a sum or difference of logarithms.
- (a) $\ln \sqrt[4]{wr^2} = \frac{1}{4} \ln w + \frac{1}{2} \ln z$ (b) $\log \sqrt[3]{\frac{M^2}{N}} = \frac{2}{3} \log M \frac{1}{3} \log N$
- (9) Solve each equation. Obtain an exact solution.

(a)
$$\log_3(x) + \log_3(x+1) = \log_3(2) + \log_3(x+3) \star$$

- (b) $\log_3(x^2 + x) = \log_3(2) + \log_3(x + 3)$ 3 and -2
- (c) $e^x + e^{-x} = 3$
- (d) $5^{x+1} = 3^{2x-1}$ $\frac{\ln 3 + \ln 5}{2\ln 3 \ln 5}$. The natural log can be replaced with any other base.

(10) Convert each angle to radian measure.

(a) $60^{\circ} \frac{\pi}{3}$ (b) $-120^{\circ} -\frac{2\pi}{3}$ (c) $18^{\circ} \frac{\pi}{10}$ (d) $-75^{\circ} -\frac{5\pi}{12}$

(11) Convert each angle to degrees.

(a) $\frac{\pi}{12}$ 15° (b) -2π -360° (c) $\frac{4\pi}{3}$ 240° (d) $2 \frac{360}{\pi}^{\circ}$

(12) Determine each of the following.

- (a) The arclength of a circle of radius 5 ft subtended by a central angle of 120°. $\frac{10\pi}{3}$ ft
- (b) The area of a sector of a circle of radius 5 ft for which the central angle is 120°. $\frac{25\pi}{3}$ ft²
- (c) The distance traveled by a point on a minute hand of a clock between 1:45 pm and 2:05 pm if the minute hand is 6 inches long.★

(13) Determine if the given angles are complements, supplements, coterminal, or none of these three things.

- (a) $\frac{\pi}{3}$ and $\frac{\pi}{6}$ Complementary (b) $\frac{4\pi}{3}$ and $-\frac{2\pi}{3}$ Co-terminal (c) 137° and 43° Supplementary
- (d) $\frac{\pi}{2}$ and -270° Co-terminal

4 e)
$$M(0) = N(0) + N(x)$$
 This is an eventuation
Note that $M(-x) = N(-x) + N(-(x))$ evolute $e -x$
 $= N(x) + N(x)$ $-(-x) = x$
 $= N(x) + N(x)$ $a + b = b + a$
 $= N(x) + N(x)$ $a + b = b + a$
 $= N(x)$
That is, $M(-x) = H(x)$. So M is even.
(i) (a) $\int \sqrt{e} = \int n e^{\frac{1}{2}} = \pm \int ne = \pm (1) = \pm \int dx e = 1$
(c) (c) $\int \sqrt{e} = \int n e^{\frac{1}{2}} = \pm \int ne = \pm (1) = \pm \int dx e = 1$
(c) (c) $\int \sqrt{e} = \int n e^{\frac{1}{2}} = \pm \int ne = \pm (1) = \pm \int dx e = 1$
(c) (c) $\int \sqrt{e} = \int n e^{\frac{1}{2}} = \pm \int ne = \pm (1) = \frac{1}{2}$ $2 + 4^{1/2}$
 \Rightarrow (b) $\int \log_{1}(x^{3} - 8) - \int \log_{1}(x^{1} + 2x + 4x) = \int 0 \int n \left(\frac{x^{2} - 8}{x^{2} + 2x + 4x}\right)$
Difference of cubes $= \int 0 \int \frac{(x - 2)(x^{2} + 2x + 4x)}{(x^{2} + 2x + 4x)}$
 $\int n^{2} - b^{2} = (a - b)(a^{2} + ab + b^{2})$ $\int 0 \int \frac{(x - 2)(x^{2} + 2x + 4x)}{(x^{2} + 2x + 4x)}$
 $\int \sqrt{e} g = (x - 2)(x^{2} + 2x + 2^{2})$
 $= \int \log_{2}(x - 2)$
(x - 2) $\int dy_{3}(x + 1) = \int \log_{3}(x) + \int \log_{3}(x + 3)$
 $\int \log_{3}(x + 1) \int \frac{1}{2} \log_{3}(x + 2) \frac{\log_{3}(x + 3)}{\log_{3}(x + 3)}$
 $\int \log_{3}(x + 2) \frac{\log_{3}(x + 3)}{\log_{3}(x + 3)}$ $\int \log_{3} x = \log_{3} x = \log_{3} x$
 $x(x + 1) = 9(x + 3)$ $\int \log_{3} x = \log_{3} x = \log_{3} x = \log_{3} x$
 $x(x + 1) = 9(x + 3)$ $\int \log_{3} x = \log_{3} x = \log_{3} x = \log_{3} x$

These solutions have be be verified in the original equation
(then
$$x=3$$
 log_(13) $Dog_{1}(2+1) = log_{2}(2+1) - log_{2}(2+3)$
 $Dog_{3}(3+1) = log_{3}(2+6)$
you thing both equal log_{3}(12)
(then $x=2$ log_{3}(12) is not defined
 -2 is not a solution
The only solution in 3.
R as $e^{x} + e^{x} - 3$
 $e^{x}(e^{x} + e^{x}) = e^{x}(2)$ theology by e^{x}
 $(e^{x})^{2} + e^{x} = 3e^{x}$
 $(e^{x})^{2} - 3e^{x} + 1 = 0$
Let $w = e^{x} - 3u + 1 = 0$ we as $\frac{1}{2}\sqrt{3^{1} + 1 + 1}$ as $\frac{1}{2}$
Both $\frac{3+15}{2}$ and $\frac{3-15}{2}$ are previous of the we
the natural log of both .
 $w = e^{x} = x = hw$
There are two solutions
 $x = \ln(\frac{3+15}{2})$ or $x = \ln(\frac{3-15}{2})$

The path traversed by the tip is n highlighted in Sneen - minute hand @ 2:05 pm 10 θ ۹ minute hand C 1:45pm The hard passes through an angle $\theta = \frac{4}{12}(2\pi) = \frac{2\pi}{3}$ Note that that is 4 out of 12 tich marks on the clock face (9 to 10 to 11 to 12 to 1) Archensth S=rO r=6 in md 0= 27 so the distance $S = (6) \left(\frac{2\pi}{3}\right) = 4\pi$ in