Review for Exam II<br>Calculus II sec. 001 Summer 2015

Sections Covered:6.2, 6.3, 6.4, 6.5, 6.6, 7.1, 7.2
This practice exam is intended to give you a rough idea of the types of problems you can expect to encounter. Nothing else is intended or implied.
(1) The region in the first quadrant bounded by the curves $y=x^{2}, y=2-x^{2}$ and the $y$-axis is
(a) rotated about the $x$-axis. Find the volume of the resulting solid. Ans: $\frac{8 \pi}{3}$
(b) rotated about the $y$-axis. Find the volume of the resulting solid. Ans: $\pi$
(2) A solid has as its base the same first quadrant region from problem (1). Cross sections taken perpendicular to the $x$-axis are
(a) squares with one side in the $x y$-plane. Find the volume of the solid. Ans: $\frac{32}{15}$
(b) semi-circles with diameter in the $x y$-plane. Find the volume of the solid. Ans: $\frac{4 \pi}{15}$
(3) The region bounded by the $x$-axis, the $y$-axis and the curve $y=\cos x$ for $0 \leq x \leq \frac{\pi}{2}$ is rotated about the $y$-axis to generate a solid. Use the method of shells to find its volume. Ans: $\pi^{2}-2 \pi$
(4) A 3 lb force is required to compress a spring 6 inches from its equilibrium length. Find the work done compressing this spring from equilibrium length to 1 foot beyond equilibrium. $k=6 \mathrm{lb} / \mathrm{ft}$, and $W=3 \mathrm{ft} \mathrm{lb}$
(5) A 60 lb chain is 20 feet long and has a uniform density. The chain hangs over a bridge and is pulled up by a winch. Find the work done lifting the chain. $W=600 \mathrm{ft} \mathrm{lb}$
(6) Find an integral representation for the length of the curve $y=e^{\frac{x}{2}}$ from $x=1$ to $x=4$. Do not evaluate the integral.

$$
s=\int_{1}^{4} \sqrt{1+\frac{1}{4} e^{x}} d x
$$

(7) Find the length of the curve $y=\frac{1}{3}\left(x^{2}+2\right)^{3 / 2}$ from $x=2$ to $x=4 . s=\frac{62}{3}$
(8) Evaluate each integral using any applicable method.
(a) $\quad \int x \sec ^{2} x d x=x \tan x-\ln |\sec x|+C$
(b) $\int 2 x e^{x^{2}} d x=e^{x^{2}}+C$
(c) $\int 2 x e^{x} d x=2 x e^{x}-2 e^{x}+C$
(d) $\int \sin ^{2} \theta d \theta=\frac{\theta}{2}-\frac{1}{4} \sin (2 \theta)+C$
(e) $\int \tan ^{-1} t d t=x \tan ^{-1} x-\frac{1}{2} \ln \left|1+x^{2}\right|+C$
(f) $\int \sec ^{4} x \tan x d x=\frac{\sec ^{4} x}{4}+C=\frac{\tan ^{4} x}{4}+\frac{\tan ^{2} x}{2}+K$
(g) $\int \cos ^{3} t \sin ^{2} t d t=\frac{\sin ^{3} t}{3}-\frac{\sin ^{5} t}{5}+C$
(h) $\int \sqrt{\cot x} \csc ^{2} x d x=-\frac{2}{3}(\cot x)^{3 / 2}+C$
(9) Evaluate the integral by first using a substitution and then integration by parts.

$$
\int e^{\sqrt{x}} d x=2 \sqrt{x} e^{\sqrt{x}}-2 e^{\sqrt{x}}+C
$$

