Review for Exam 2

MATH 2306

Sections Covered: 4, 5, 6, 7

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.

- (1) Determine whether the set of functions is linearly dependent or linearly independent on the indicated interval.
- (a) $y_1(x) = e^{x+1}$, $y_2(x) = e^{x-1}$, $(-\infty, \infty)$
- (b) $f_1(x) = \sin x$, $f_2(x) = \tan x$, $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
- (c) $g_1(t) = t$, $g_2(t) = t^2$, $g_3(t) = t^3$, $(0, \infty)$
- (2) Determine whether the indicated set of functions forms a fundamental solution set for the given ODE.
- (a) $y_1 = x$, $y_2 = \frac{1}{x}$ $x^2y'' + xy' y = 0$, x > 0
- (b) $y_1 = xe^x$, $y_2 = e^{2x}$ y'' 2y' + y = 0,
- (c) $y_1 = e^{2x}$, $y_2 = e^{2x+1}$ y'' + y' 6y = 0,
- (d) $y_1 = e^{2x}$, $y_2 = e^{-3x}$, $y_3 = 1$ y''' + y'' 6y' = 0,
- (3) An LR series circuit with inductance 20 henries and resistance 4 ohms has electromotive force of 200 volts applied to it. Find the current i(t) if i(0) = 0.
- (4) An RC series circuit with resistance of 10 ohms and capacitance of 0.1 farads has electromotive force of $E(t) = 20te^{-t}$ applied to it. Find the charge on the capacitor q(t) if q(0) = 0.

- (5) A tank initially contains 500 L of salt water in which 5 kg of salt is dissolved. Suppose a brine solution containing 0.2 kg of salt per liter runs into the tank. The brine enters the tank at a rate of 5 L/min, and the well mixed solution is flowing out of the tank at the same rate. Find the amount of salt A(t) in the tank at time t.
- (6) A large tank is partially filled with 100 gallons of fluid into which 10 pounds of salt is dissolved. Fresh water is pumped in at a rate of 6 gallons per minute, and the well mixed solution is pumped out at the slower rate of 4 gallons per minute. Determine the number of pounds of salt in the tank after 30 minutes.
- (7) A population of bacteria experience exponential growth. If the initial population P(0) = 1000, and the population doubles every 4 hours, determine the population P(t) for all t > 0.
- (8) Solve each IVP.

(a)
$$\frac{dy}{dx}$$
 - tan $xy = \sin x$, $y(0) = 1$

(b)
$$x \frac{dy}{dx} + 3y = \frac{1}{x^2(1+x^2)}, \quad y(1) = 0$$

(9) Given one solution of the homogeneous equation, use reduction of order to find a second linearly independent solution.

(a)
$$(x-1)y''-xy'+y=0$$
 $x>1$, $y_1(x)=x$

(b)
$$x^2y'' + 3xy' - 3y = 0$$
 $x > 0$, $y_1(x) = x^{-3}$