Review for Exam 2

MATH 2306
Sections Covered: $4^{1}, 5,6,7,8$

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) Solve each Bernoulli equation. Answers should be presented explicitly.
(a) $y^{\prime}+3 y=y^{2} e^{3 x}$
(b) $\frac{d y}{d x}+4 x y=4 x \sqrt{y}$
(2) Determine whether the indicated set of functions forms a fundamental solution set for the given ODE.
(a) $y_{1}=x e^{x}, \quad y_{2}=e^{2 x} \quad y^{\prime \prime}-2 y^{\prime}+y=0$,
(b) $\quad y_{1}=e^{2 x}, \quad y_{2}=e^{2 x+1} \quad y^{\prime \prime}+y^{\prime}-6 y=0$,
(c) $y_{1}=e^{2 x}, \quad y_{2}=e^{-3 x}, \quad y_{3}=1 \quad y^{\prime \prime \prime}+y^{\prime \prime}-6 y^{\prime}=0$,
(3) An LR series circuit with inductance 20 henries and resistance 4 ohms has electromotive force of 200 volts applied to it. Find the current $i(t)$ if $i(0)=0$.
(4) An RC series circuit with resistance of 10 ohms and capacitance of 0.1 farads has electromotive force of $E(t)=20 t e^{-t}$ applied to it. Find the charge on the capacitor $q(t)$ if $q(0)=0$.
(5) A tank initially contains 500 L of salt water in which 5 kg of salt is dissolved. Suppose a brine solution containing 0.2 kg of salt per liter runs into the tank. The brine enters the tank at a rate of $5 \mathrm{~L} / \mathrm{min}$, and the well mixed solution is flowing out of the tank at the same rate. Find

[^0]the amount of salt $A(t)$ in the tank at time t .
(6) A large tank is partially filled with 100 gallons of fluid into which 10 pounds of salt is dissolved. Fresh water is pumped in at a rate of 6 gallons per minute, and the well mixed solution is pumped out at the slower rate of 4 gallons per minute. Determine the number of pounds of salt in the tank after 30 minutes.
(7) A population of bacteria experience exponential growth. If the initial population $P(0)=$ 1000, and the population doubles every 4 hours, determine the population $P(t)$ for all $t>0$.
(8) Given one solution of the homogeneous equation, use reduction of order to find a second linearly independent solution.
(a) $\quad(x-1) y^{\prime \prime}-x y^{\prime}+y=0 \quad x>1, \quad y_{1}(x)=e^{x}$
(b) $x^{2} y^{\prime \prime}+3 x y^{\prime}-3 y=0 \quad x>0, \quad y_{1}(x)=x$
(9) Find the general solution of the homogeneous equation.
(a) $y^{\prime \prime}+6 y^{\prime}+9 y=0$
(b) $y^{\prime \prime}-36 y=0$
(c) $y^{(4)}+3 y^{\prime \prime}-4 y=0$
(10) Solve each IVP
(a) $\quad y^{\prime \prime}-3 y^{\prime}+2 y=0 \quad y(0)=0, \quad y^{\prime}(0)=2$
(b) $y^{\prime \prime}+2 y^{\prime}=0 \quad y(1)=0, \quad y^{\prime}(1)=1$
(c) $\quad y^{\prime \prime}-2 y^{\prime}+5 y=0 \quad y(0)=0, \quad y^{\prime}(0)=2$
(11) For each homogeneous equation, write out the characteristic equation. If the equation doesn't have a characteristic equation, briefly state why.
(a) $3 \frac{d^{4} y}{d x^{4}}-2 \frac{d^{3} y}{d x^{3}}+\frac{d y}{d x}-4 y=0$
(b) $4 y^{\prime \prime}+2 x y^{\prime}+e^{x} y=0$
(c) $x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}-4 x y^{\prime}+y=0$
(d) $y^{(6)}+16 y^{(4)}-12 y^{\prime \prime}+y=0$

[^0]: ${ }^{1}$ Bernoulli

