Solutions to Review for Exam 2
 MATH 2306

Sections Covered: $4^{1}, 5,6,7,8$

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) Solve each Bernoulli equation. Answers should be presented explicitly.
(a) $y^{\prime}+3 y=y^{2} e^{3 x} \quad y=\frac{e^{-3 x}}{c-x}$
(c) $\frac{d y}{d x}+4 x y=4 x \sqrt{y} \quad y=\left(1+c e^{-x^{2}}\right)^{2}$
(2) Determine whether the indicated set of functions forms a fundamental solution set for the given ODE.
(a) $y_{1}=x e^{x}, \quad y_{2}=e^{2 x} \quad y^{\prime \prime}-2 y^{\prime}+y=0, \quad$ no, y_{2} doesn't solve it
(b) $y_{1}=e^{2 x}, \quad y_{2}=e^{2 x+1} \quad y^{\prime \prime}+y^{\prime}-6 y=0, \quad$ no, dependent
(c) $y_{1}=e^{2 x}, \quad y_{2}=e^{-3 x}, \quad y_{3}=1 \quad y^{\prime \prime \prime}+y^{\prime \prime}-6 y^{\prime}=0, \quad$ yes
(2) An LR series circuit with inductance 20 henries and resistance 4 ohms has electromotive force of 200 volts applied to it. Find the current $i(t)$ if $i(0)=0 . \quad i(t)=50\left(1-e^{-t / 5}\right)$
(3) An RC series circuit with resistance of 10 ohms and capacitance of 0.1 farads has electromotive force of $E(t)=20 t e^{-t}$ applied to it. Find the charge on the capacitor $q(t)$ if $q(0)=0 . \quad q(t)=t^{2} e^{-t}$

[^0](4) A tank initially contains 500 L of salt water in which 5 kg of salt is dissolved. Suppose a brine solution containing 0.2 kg of salt per liter runs into the tank. The brine enters the tank at a rate of $5 \mathrm{~L} / \mathrm{min}$, and the well mixed solution is flowing out of the tank at the same rate. Find the amount of salt $A(t)$ in the tank at time $\mathrm{t} . \quad A(t)=100-95 e^{-t / 100}$
(5) A large tank is partially filled with 100 gallons of fluid into which 10 pounds of salt is dissolved. Fresh water is pumped in at a rate of 6 gallons per minute, and the well mixed solution is pumped out at the slower rate of 4 gallons per minute. Determine the number of pounds of salt in the tank after 30 minutes. $\quad A(30)=\frac{125}{32} \mathrm{lbs}$
(6) A population of bacteria experience exponential growth. If the initial population $P(0)=$ 1000, and the population doubles every 4 hours, determine the population $P(t)$ for all $t>0$. $P(t)=1000 e^{\left(\frac{\ln 2}{4}\right) t}$ for t in hours
(7) Given one solution of the homogeneous equation, use reduction of order to find a second linearly independent solution.
(a) $\quad(x-1) y^{\prime \prime}-x y^{\prime}+y=0 \quad x>1, \quad y_{1}(x)=e^{x} \quad y_{2}(x)=x$
(b) $\quad x^{2} y^{\prime \prime}+3 x y^{\prime}-3 y=0 \quad x>0, \quad y_{1}(x)=x \quad y_{2}(x)=x^{-3}$
(8) Find the general solution of the homogeneous equation.
(a) $y^{\prime \prime}+6 y^{\prime}+9 y=0 \quad y=c_{2} e^{-3 x}+c_{2} x e^{-3 x}$
(b) $y^{\prime \prime}-36 y=0 \quad y=c_{1} e^{6 x}+c_{2} e^{-6 x}$
(c) $y^{(4)}+3 y^{\prime \prime}-4 y=0 \quad y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+c_{3} e^{x}+c_{4} e^{-x}$

(9) Solve each IVP

(a) $y^{\prime \prime}-3 y^{\prime}+2 y=0 \quad y(0)=0, \quad y^{\prime}(0)=2 \quad y=2 e^{2 x}-2 e^{x}$
(b) $y^{\prime \prime}+2 y^{\prime}=0 \quad y(1)=0, \quad y^{\prime}(1)=1 \quad y=\frac{1}{2}-\frac{e^{2}}{2} e^{-2 x}$
(c) $y^{\prime \prime}-2 y^{\prime}+5 y=0 \quad y(0)=0, \quad y^{\prime}(0)=2 \quad y=e^{x} \sin (2 x)$
(10) For each homogeneous equation, write out the characteristic equation. If the equation doesn't have a characteristic equation, briefly state why.
(a) $3 \frac{d^{4} y}{d x^{4}}-2 \frac{d^{3} y}{d x^{3}}+\frac{d y}{d x}-4 y=0 \quad 3 m^{4}-2 m^{3}+m-4=0$
(b) $4 y^{\prime \prime}+2 x y^{\prime}+e^{x} y=0$ none exists, it's not constant coefficient
(c) $x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}-4 x y^{\prime}+y=0$ none exists, it's not constant coefficient
(d) $y^{(6)}+16 y^{(4)}-12 y^{\prime \prime}+y=0 \quad m^{6}+16 m^{4}-12 m^{2}+1=0$

[^0]: ${ }^{1}$ Bernoulli

